Peroxisome Proliferator–Activated Receptors and The Metabolic Syndrome

Anna Meiliana, Andi Wijaya

Abstract


BACKGROUND: Obesity is a growing threat to global health by virtue of its association with insulin resistance, inflammation, hypertension, and dyslipidemia, collectively known as the metabolic syndrome (MetS). The nuclear receptors PPARα and PPARγ are therapeutic targets for hypertriglyceridemia and insulin resistance, respectively, and drugs that modulate these receptors are currently in clinical use. More recent work on the PPARδ has uncovered a dual benefit for both hypertriglyceridemia and insulin resistance, highlighting the broad potential of PPARs in the treatment of metabolic disease.

CONTENT: We have learned much about PPARs, the metabolic fat sensors, and the molecular pathways they regulate. Through their distinct tissue distribution and specific target gene activation, the three PPARs together control diverse aspects of fatty acid metabolism, energy balance, insulin sensitivity glucose homeostasis, inflammation, hypertension and atherosclerosis. These studies have advanced our understanding of the etiology for the MetS. Mechanisms revealed by these studies highlight the importance of emerging concepts, such as the endocrine function of adipose tissue, tissue-tissue cross-talk and lipotoxicity, in the pathogenesis of type 2 diabetes mellitus and CVD.

SUMMARY: The elucidation of key regulators of energy balance and insulin signaling have revolutionized our understanding of fat and sugar metabolism and their intimate link. The three ‘lipidsensing’ (PPARα, PPARγ and PPARδ) exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis, and serving as bonafide therapeutic targets.

KEYWORDS: Peroxisome Proliferator, Activated Receptor, Metabolic Syndrome


Full Text:

PDF

References


Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004; 109: 433-8, CrossRef.

Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002; 288: 2709-16, CrossRef.

Shulman AI, Mangelsdorf DJ. Retinoid X receptor heterodimers in the metabolic syndrome. N Engl J Med. 2005; 353: 604-15, CrossRef.

Gustafson B, Hammarstedt A, Andersson CX, Smith U. Inflamed adipose tissue. A culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol. 2007; 27: 2276-83, CrossRef.

Sonnenberg G, Krakower R, Kissebah AH. A novel pathway to the manifestations of metabolic syndrome. Obes Res. 2004; 12: 180-6, CrossRef.

Taskinen MR. Is metabolic syndrome the main threat to human health in the twenty-first century? Arterioscler Thromb Vasc Biol. 2007; 27: 2275, CrossRef.

Morales LA, Piqueras L, Bishop-Bailey D. Peroxisome proliferatoractivated receptors and inflammation. Pharmacol Ther. 2006; 110: 371-85, CrossRef.

Bishop-Bailey D, Wray J. Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins Other Lipid Mediat. 2003; 71: 1-22, CrossRef.

Barak Y, Liao D, He W, Ong ES, Nelson MC, Olefsky JM, et al. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci USA. 2001; 99: 303-8, CrossRef.

Michalik L, Desvergne B, Tan NS, Basu-Modak S, Escher P, Rieusset J, et al. Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and PPARbeta mutant mice. J Cell Biol. 2001; 154: 799-814, CrossRef.

Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006; 58: 726-41, CrossRef.

Bishop-Bailey D. Peroxisome proliferator-activated receptor β/γ goes vascular. Circ Res. 2008; 102: 146-7, CrossRef.

Mudaliar S, Henry RR. PPAR agonist in health and disease: a pathophysiologic and clinical overview. Curr Opin Endocrinol Metab. 2002; 9: 285-302, CrossRef.

Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature (Lond). 1990; 347: 645–50, CrossRef.

Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992; 68: 879-87, CrossRef.

Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA. 1994; 91: 7355-9, CrossRef.

Amri EZ, Bonino F, Ailhaud G, Abumrad NA, Grimaldi PA. Cloning of a protein that ediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J Biol Chem. 1995; 270: 2367-71, CrossRef.

Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, and RodanGA. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol. 1992; 6: 1634-41, CrossRef.

Mandard S, Muller M, and Kersten S. Peroxisome proliferatoractivated receptor alpha target genes. Cell Mol Life Sci. 2004; 61: 393-416, CrossRef.

Braissant O, Foufelle F, Scotto C, Dauca M, and Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996; 137: 354-66, CrossRef.

Bastie C, Holst D, Gaillard D, Jehl-Pietri C, Grimaldi PA. Expression of peroxisome proliferator-activated receptor PPAR-delta promotes induction of PPAR-gamma and adipocyte differentiation in 3T3C2 fibroblasts. J Biol Chem. 1999; 274: 21920-5, CrossRef.

Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C, et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferatoractivated receptor beta(delta). Mol Cell Biol 2000; 20: 5119-28, CrossRef.

Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology. 1994; 135: 798-800, CrossRef.

Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994; 8: 1224-34, CrossRef.

Tontonoz P, Graves RA, Budavari AI, Erdjument-Bromage H, Lui M, Hu E, et al. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res. 1994; 22: 5628-34, CrossRef.

Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, et al. Structural organization of mouse peroxisome proliferatoractivated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA. 1995; 92: 7921-5, CrossRef.

Kliewer SA, Umesono K, Noonan DJ, Heyman RA, and Evans RM. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature (Lond). 1992; 358: 771-4, CrossRef.

Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptorretinoid X receptor heterodimers. Proc Natl Acad Sci USA. 1993; 90: 2160-4, CrossRef.

Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene. EMBO (Eur Mol Biol Organ) J. 1992; 11: 433-9, PMID.

Feige JN, Gelman L, Tudor C, Engelborghs Y, Wahli W, Desvergne B. Fluorescence imaging reveals the nuclear behavior of peroxisome proliferatoractivated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem. 1995; 280: 17880-90, CrossRef.

Di-Poi N, Tan NS, Michalik L, Wahli W, Desvergne B. Antiapoptotic role of PPARbeta in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol Cell. 2002; 10: 721-33, CrossRef.

DiRenzo J, Soderstrom M, Kurokawa R, Ogliastro MH, Ricote M, Ingrey S, et al. Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol Cell Biol. 1997; 17: 2166-76, PMID.

Ijpenberg AI, Jeannin E, Wahli W, Desvergne B. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem. 1997; 272: 20108-17, CrossRef.

Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA, et al. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5’-flanking region. J Biol Chem. 1997; 272: 25252-9, CrossRef.

Dowell P, Ishmael JE, Avram D, Peterson VJ, Nevrivy DJ, Leid M. Identification of nuclear receptor corepressor as a peroxisome proliferatoractivated receptor alpha interacting protein. J Biol Chem. 1999; 274: 15901-7, CrossRef.

Stanley TB, Leesnitzer LM, Montana VG, Galardi CM, Lambert MH, Holt JA, et al. Subtype specific effects of peroxisome proliferator-activated receptor ligands on corepressor affinity. Biochemistry. 2003; 42: 9278-87, CrossRef.

Guan HP, Ishizuka T, Chui PC, Lehrke M, Lazar MA. Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev. 2005; 19: 453-61, CrossRef.

Yu C, Markan K, Temple KA, Deplewski D, Brady MJ, Cohen RN. The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferatoractivated receptor gamma transcriptional activity and repress 3T3–L1 adipogenesis. J Biol Chem. 2005; 280: 13600-5, CrossRef.

Bishop-Bailey D and Wray J. Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins Other Lipid Mediat. 2003; 71: 1-22, CrossRef.

Desvergne B, Michalik L, Wahli W. Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol. 2004; 18: 1321-32, CrossRef.

Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004; 10: 335-61, CrossRef.

Ferré P. The Biology of Peroxisome Proloferator-Activated Receptors. Diabetes. 2004; 53 (suppl. 1): S43-S50, CrossRef.

Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, et al. PPAR-delta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA. 2003; 100: 1268-73, CrossRef.

Ziouzenkova O, Perrey S, Asatryan L, Hwang J, MacNaul KL, Moller DE, et al. Lipolysis of TG-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci USA. 2003; 100: 2730-5, CrossRef.

Ahmed W, Orasanu G, Nehra V, Asatryan L, Rader DJ, Ziouzenkova O, et al. High-density lipoprotein hydrolysis by endothelial lipase activates PPARalpha: a candidate mechanism for high-density lipoprotein-mediated repression of leukocyte adhesion. Circ Res. 2006; 98: 490-8, CrossRef.

Bosse Y, Despres JP, Bouchard C, Perusse L, Vohl MC. The peroxisome proliferator-activated receptor alpha L162V mutation is associated with reduced adiposity. Obes Res. 2003; 11: 809-16, CrossRef.

Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA. 1997; 94: 4318-23, CrossRef.

Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995; 83: 813-9, CrossRef.

Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxydelta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 1995; 83: 803-12, CrossRef.

Way JM, Harrington WW, Brown KK, Gottschalk WK, Sundseth SS, Mansfield TA, et al. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferatoractivated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology. 2001; 142: 1269-77, CrossRef.

Ribon V, Johnson JH, Camp HS, Saltiel AR. Thiazolidinediones and insulin resistance: peroxisome proliferator-activated receptor gamma activation stimulates expression of the CAP gene. Proc Natl Acad Sci USA. 1998; 95: 14751-6, CrossRef.

Young PW, Cawthorne MA, Coyle PJ, Holder JC, Holman GD, Kozka IJ, et al. Repeat treatment of obese mice with BRL 49653, a new potent insulin sensitizer, enhances insulin action in white adipocytes: association with increased insulin binding and cell-surface GLUT4 as measured by photoaffinity labeling. Diabetes. 1995; 44: 1087-92, CrossRef.

Sfeir Z, Ibrahimi A, Amri E, Grimaldi P, Abumrad N. Regulation of FAT/CD36 gene expression: further evidence in support of a role of the protein in fatty acid binding/transport. Prostaglandins Leukot Essent Fatty Acids. 1997; 57: 17-21, CrossRef.

Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994; 79: 1147-56, CrossRef. [Erratum, Cell. 1995; 80: following 957.]

Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996; 15: 5336-48, PMID.

Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem. 1997; 272: 28210-7, CrossRef.

Aubert J, Champigny O, Saint-Marc P, Negrel L, Collins S, Ricquier D, et al. Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells. Biochem Biophys Res Commun. 1997; 238: 606-11, CrossRef.

Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med. 2002; 8: 1122-8, CrossRef.

Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998; 93: 229-40, CrossRef.

Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998; 93: 241-52, CrossRef.

Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001; 7: 161-71, CrossRef.

Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest. 2000; 106: 523-31, CrossRef.

Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferatoractivated receptor gamma (PPAR gamma). J Biol Chem. 1995; 270: 12953-6, CrossRef.

Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell. 2003; 113: 159-70, CrossRef.

Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM, et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferatoractivated receptor (PPAR) alpha knock-out mice: evidence for compensatory regulation by PPAR delta. J Biol Chem. 2002; 277: 26089-97, CrossRef.

Oliver WR Jr, Shenk JL, Snaith MR, Russel CS, Plunket KD, Bodkin NL, et al. A selective peroxisome proliferatoractivated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA. 2001; 98: 5306-11, CrossRef.

Reaven GM. Syndrome X: 6 years later. J Intern Med 1994; Suppl 736: 13-22, PMID.

Lee CH, Olson P, Evans RM. Minireview: Lipid Metabolism, Metabolic Disease, and Peroxisome Proliferator-Activated Receptors. Endocrinology. 2003; 144: 2201-7, CrossRef.

Desvergne B, Wahli W. Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism. Endocrinol Rev. 1999; 20: 649-88, CrossRef.

Peters JM, Hennuyer N, Staels B, Fruchart JC, Fievet C, Gonzalez FJ, et al. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor α-deficient mice. J Biol Chem. 1997; 272: 27307-12, CrossRef.

Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, et al. Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 1995; 15: 3012-22, PMID.

Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). J Biol Chem. 1998; 273: 5678-84, CrossRef.

Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA. 1999; 96: 7473-8, CrossRef.

Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor αmediates the adaptive response to fasting. J Clin Invest. 1999; 103:1489-98, CrossRef.

Watts GF, Dimmitt SB. Fibrates, dyslipoproteinaemia and cardiovascular disease. Curr Opin Lipidol. 1999; 10: 561-74. CrossRef.

Schultz AE, Alborn WE, Newton RK, Konrad RJ. Administration of PPARα agonist increases serum apolipoprotein A-V levels and the apolipoprotein A-V/apolipoprotein C-III ratio. J Lipid Res. 2005; 46: 159-5, CrossRef.

Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, et al. PPAR Gamma 2 Prevents Lipotoxicity by Controlling Adipose Tissue Expandability and Peripheral Lipid Metabolism. Plos Genet. 2007; 3: 634-47, CrossRef.

Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000; 289: 1524-29, CrossRef.

Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR α. Proc Natl Acad Sci USA. 2000; 97: 12097-102, CrossRef.

Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem. 2000; 75: 28240-5, CrossRef.

Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol. 1999; 10: 51-8, CrossRef.

Sprecher DL, Massien C, Pearce G, Billin AN, Perlstein I, Willson TM, et al. TG: High-Density Lipoprotein Cholesterol Effects in Healthy Subjects Administered a Peroxisome Proliferator-Activated Receptor δ Agonist. Arterioscler Thromb Vasc Biol. 2007; 27: 359-65, CrossRef.

Lee CH, Olson P, Havener A, Mehl I, Chong LW, Olefsky JM, et al. PPARδ Regulates Glucose Metabolism and Insulin Sensitivity. Proc Natl Acad Sci USA. 2006; 103: 3444-9, CrossRef.

Cock TA, Auwerx J. PPARγ Fundamental Role in Adipogenesis. Int Congress Series. 2004; 1262: 47-50, CrossRef.

Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000; 14: 1293-307, PMID.

Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999; 4: 585-95, CrossRef.

Rosen ED, Sarraf P, Troy A, Bradwin G, Moore K, Milstone D, et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999; 4: 611-7, CrossRef.

Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999; 4: 597-609, CrossRef.

Agarwal AK & Garg A. A novel heterozygous mutation in peroxisome proliferator activated receptor-γ gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002; 87: 408-11, CrossRef.

Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002; 51: 3586-90, CrossRef.

Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, et al. Human metabolic syndrome resulting from dominantnegative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ. Diabetes. 2003; 52: 910-7, CrossRef.

Wu Z, Rosen E, Brun R, Hauser S, Adelmant A, Troy A, et al. Cross-regulation of C/EBP and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell. 1999; 3: 151-8, CrossRef.

Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. C/EBPalpha induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 2002; 16: 22-6, CrossRef.

MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab. 2002; 13: 5-11, CrossRef.

Frohnert BI, Hui TY, Bernlohr DA. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem. 1999; 274: 3970-7, CrossRef.

Chui PC, Guan HP, Lehrke M, Lazar MA. PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J Clin Invest. 2005; 115: 2244-56, CrossRef.

Tontonoz P, Hu E, Devine J, Beale EG, Spiegelman BM. PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1995; 15: 351-7, PMID.

Tordjman J, Chauvet G, Quette J, Beale EG, Forest C, Antoine B. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem. 2003; 278: 18785-90, CrossRef.

Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA. 2005; 102: 10993-8, CrossRef.

Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest. 1998; 101: 1354-61, CrossRef.

Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest. 2004; 114: 1281-9, CrossRef.

Lehrke M, Lazar MA. The Many Faces of PPARγ. Cell. 2005; 123: 993-9, CrossRef.

Yamauchi T, Kamon J, Waki H, Murakami K, Motojima J, Komeda K, et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J Biol Chem. 2001; 276: 41245-54, CrossRef.

Peraldi P, Xu M, Spiegelman BM. Thiazolidinediones block tumor necrosis factor-α-induced inhibition of insulin signaling. J Cli Invest. 1997; 100: 1863-9, CrossRef.

Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001; 409: 307-12, CrossRef.

Rajala MW, Obici S, Scherer PE, Rossetti L. Adipose-derived resistin and gut-derived resistin-like molecule-β selectively impair insulin action on glucose production. J Clin Invest. 2003; 111: 225-300, CrossRef.

Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adiposederived protein Acrp30. J Clin Invest. 2001; 108: 1875-81, CrossRef.

Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocytesecreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001; 7: 947-53, CrossRef.

Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001; 7: 941-6, CrossRef.

Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002; 8: 1288-95, CrossRef.

Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423: 762-9, CrossRef.

Yamauchi T, Waki H, Kamin J, Murakami K, Motojima K, Komeda K, et al. Inhibition of RXR and PPARγ Ameliorates Diet-Induced Obesity and Type 2 Diabetes. J Clin Invest. 2001; 108: 1001-13, CrossRef.

Zhang B, Berger J, Hu E, Szalkowski D, White-Carrington S, Spielgman BM, et al. Negative Regulation of Peroxisome Proliferator-Activated Receptor-γ Gene Expression Contributes to the Antiadipogenic Effects of Tumor Necrosis Factor-α. Mol Endocrinol. 1996; 10: 1457-66, CrossRef.

White MF. Insulin signaling in health and disease. Science. 2003; 302: 1710-11, CrossRef.

Minami A, Iseki M, Kishi K, Wang M, Ogura M, Furukawa N, et al. Increased insulin sensitivity and hypoinsulinemia in APS knockout mice. Diabetes. 2003; 52: 2657-65, CrossRef.

Duan C, Yang H, White MF, Rui L. Disruption of the SH2-B gene causes agedependent insulin resistance and glucose intolerance. Mol Cell Biol. 2004; 24: 7435-43, CrossRef.

Molero JC, Jensen TE, Withers PC, Couzens M, Herzog H, Thien CBF, et al. c-Cbl–deficient mice have reduced adiposity, higher energy expenditure and improved peripheral insulin action. J Clin Invest. 2004; 114: 1326-33, CrossRef.

Bard-Chapeau EA, Hevener AL, Long S, Zhang EE, Olefsky JM, Feng GS. Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med. 2005; 11: 567-71, CrossRef.

Hosomi Y, Ogawa KS, Matsuba H, Yoshida M, Okada Y, Yokono K, et al. Characterization of a 60-kilodalton substrate of the insulin receptor kinase. J Biol Chem. 1994; 269: 11498-502, PMID.

Carpino N, Wisniewski D, Strife A, Marshak D, Kobayashi R, Stillman B, et al. p62dok: a constitutively tyrosinephosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell. 1997; 88: 197-204, CrossRef.

Yamanashi Y, Baltimore D. Identification of the Abl- and rasGAP-associated 62-kDa protein as a docking protein, Dok. Cell. 1997; 88: 205-11, CrossRef.

Hosooka T, Noguchi T, Kotani K, Nakamura T, Sakaue H, Inoue H, et al. Dok1 Mediates High-Fat Diet-Induced Adipocyte Hypertrophy and Onesity Through Modulation of PPAR-γ Phosphorylation. Nat Med. 2008; 14: 188-93, CrossRef.

Cohen RN. Nuclear Receptor Corepressors and PPARγ. NRS. 2006; 4: 1-4, CrossRef.

Wu Z, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999; 98: 115-24, CrossRef.

Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998; 92: 829-39, CrossRef.

Oishi Y, Manabe I, Tobe K, Ohsugi M, Kubota T, Fujiu K, et al. SUMOylation of Krüppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-δ. Nat Med. 2008; 14: 656-66, CrossRef.

Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GEO. The peroxisome proliferator–activated receptor b/d agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol. 2003; 17: 2477-93, CrossRef.

Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Jamura H, Ikeda Y, et al. Activation of peroxisome proliferator–activated receptor d induces fatty acid b-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA. 2003; 100: 15924-9, CrossRef.

Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M, Parker MG, et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferatoractivated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997; 11: 779-91, CrossRef.

Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, et al. Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase. Nature. 1999; 400: 378-82, CrossRef.

Cunard R, Ricote M, DiCampli D, Archer DC, Kahn DA, Glass CK, et al. Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J Immunol. 2002; 168: 2795-802, CrossRef.

Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, Glass CK. PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci USA. 2003; 100: 6712-7, CrossRef.

Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-? is a negative regulator of macrophage activation. Nature. 1998; 391: 79-82, CrossRef.

Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, et al. Activation of proliferatoractivated receptors α and γ induces apoptosis of human monocytederived macrophages. J Biol Chem. 1998; 273: 25573-80, CrossRef

Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W. The PPARα-leukotriene B4 pathway to inflammation control. Nature. 1996; 384: 39-43, CrossRef.

Hill MR, Clarke S, Rodgers K, Thornhill B, Peters JM, Gonzalez FJ et al. Effect of peroxisome proliferator-activated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia. Infect Immun. 1999; 67: 3488-93, PMID.

Lee H, Shi W, Tontonoz P, Wang S, Subbanagounder G, Hedrick CC, et al. Role for peroxisome proliferator-activated receptor alpha in oxidized phospholipid-induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells. Circ Res. 2000; 87: 516-21, CrossRef.

Ricote M, Valledor AF, Glass CK. Decoding Transcriptional Programs Regulated by PPARs and LXRs in the Macrophage: Effects on Lipid Homeostasis, Inflammation, and Atherosclerosis. Arterioscler Thromb Vasc Biol. 2004; 24: 230-9, CrossRef.

Pasceri V, Chang J, Willerson JT, Yeh ET. Modulation of Creactive protein–mediated monocyte chemoattractant protein-1 induction in human endothelial cells by antiatherosclerosis drugs. Circulation. 2001; 103: 2531-4, CrossRef.

Ikewaki K, Tohyama J, Nakata Y, Wakikawa T, Kido T, Mochizuki S. Fenofibrate effectively reduces remnants and small dense LDL and increases HDL particle number in hyperTGmic men-a nuclear magnetic resonance study. J Atheroscler Thromb. 2004; 11: 278-85, CrossRef.

Wang TD, Chen WJ, Lin JW, Cheng CC, Chen MF, Lee YT. Efficacy of fenofibrate and simvastatin on endothelial function and inflammatory markers in patients with combined hyperlipidemia: relations with baseline lipid profiles. Atherosclerosis. 2003; 170: 315-23, CrossRef.

Han SH, Quon MJ, Koh KK. Beneficial Vascular and Metabolic Effects of Peroxisome Proliferator-Activated Receptor-α Activators. Hypertension. 2005; 46: 1086-92, CrossRef.

Teissier E, Nohara A, Chonetti G, Paumelle R, Cariou B, Fruchart JC, et al. Peroxisome proliferator–activated receptor α induces NADPH oxidase activity in macrophages, leading to the generation of LDL with PPAR-α activation properties. Circ Res. 2004; 95: 1174-82, CrossRef.

Boullier A, Bird DA, Chang MK, Dennis EA, Friedman P, Gillotre-Taylor K, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann NY Acad Sci. 2001; 947: 214-22, CrossRef.

Devchand PR, Ziouzenkova O, Plutzky J. Oxidative Stress and Peroxisome Proliferator-Activated Receptors. Reversing or Curse? Circ Res. 2004; 95: 1137-9, CrossRef.

Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Med. 2001; 7: 48-52, CrossRef.

Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998; 391: 82-6, CrossRef.

Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, et al. Expression of the peroxisome proliferatoractivated receptor g (PPARg) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoproteins. Proc Natl Acad Sci USA. 1998; 95: 7614-9, CrossRef.

Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nature Med. 2001; 7: 41-7, CrossRef.

Thieringer R, Fenyk-Melody JE, Le Grand CB, Shelton BA, Detmers PA, Somers EP, et al. Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol. 2000; 164: 1046-54, CrossRef.

Bamba H, Ota S, Kato A, Kawamoto C, Fujiwara K. Prostaglandins up-regulate vascular endothelial growth factor production through distinct pathways in differentiated U937 cells. Biochem Biophys Res Commun. 2000; 273: 485-91, CrossRef.

Moore KJ, Fitzgerald ML, Freeman MW. Peroxisome Proliferator-Activated receptors in macrophage biology: friend or foe? Curr Opin Lipidol. 2001; 12: 519-27, CrossRef.

Chinetti G, Fruchart JC, Staels B. Peroxisome proliferatoractivated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000; 49: 497-505, CrossRef.

Kintscher U, Goetze S, Wakino S, Kim S, Nagpal S, Chandraratna RA, et al. Peroxisome proliferator-activated receptor and retinoid X receptor ligands inhibit monocyte chemotactic protein-1-directed migration of monocytes. Eur J Pharmacol. 2000; 401: 259-70, CrossRef.

Tanaka T, Fukunaga Y, Itoh H, Doi K, Yamashita J, Chun TH, et al. Therapeutic potential of thiazolidinediones in activation of peroxisome proliferator-activated receptor gamma for monocyte recruitment and endothelial regeneration. Eur J Pharmacol. 2005; 508: 255-65, CrossRef.

Rigamonti E, Fontaine C, Lefebvre B, Duhem C, Lefebvre P, Marx N, et al. Induction of CXCR2 receptor by peroxisome proliferator-activated receptor γ in human macrophages. Arterioscler Thromb Vasc Biol. 2008; 28: 932-39, CrossRef.

Marx N, Bourcier T, Sukhova GK, LibbyP, Plutzky J. PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol. 1999; 19: 546-51, CrossRef.

Plutzky J. Peroxisome proliferator-activated receptors in endothelial cell biology. Curr Opin Lipidol. 2001; 12: 511-8, CrossRef.

Hwang J, Kleinhenz DJ, Lassègue B, Griendling KK, Dikalov S, Hart CM. Peroxisome proliferator-activated receptors-γ ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol. 2005; 288: C899-C905, CrossRef.

Takata Y, Kitami Y, Yang ZH, Nakamura M, Okura T, Hiwada K. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-δ and peroxisome proliferator–activated receptor-γ. Circ Res. 2002; 91: 427-33, CrossRef.

Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert W, Evans EM. Transkriptional repression of atherogenic inflammation: modulation by PPARδ. Science. 2003; 302: 453-7, CrossRef.

Lee CH, Kang K, Mehl IR, Nofsinger R, Alaynick WA, Chong LW, et al. Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage. Proc Natl Acad Sci USA. 2006; 103: 2434-9, CrossRef.

Fan Y, Wang Y, Tang Z, Zhang H, Qin X, Zhu Y, et al. Supression pro-inflammatory adhesion molecules by PPAR-δ in human vascular endothelial cells. Arteriol Thromb Vasc Biol. 2008; 28: 315-21, CrossRef.

Kim HJ, Ham SA, Kim SU, Hwang JY, Kim JH, Chang KC, et al. Transforming growth factor-β1 is a molecular target for the peroxisome proiliferator-activated receptor δ. Circ Rei. 2008; 102: 193-200, CrossRef.

Yagil C, Yagil Y. Peroxisome proliferator-activated receptors–α. Friend or foe? Hypertension. 2007; 50: 847-50, CrossRef.

Tordjman K, Semenkovich CF, Coleman T, Yudovich R, Bak S, Osher E, et al. Absence of peroxisome proliferatoractivated receptor-α abolishes hypertension and attenuates atherosclerosis in the Tsukuba hypertensive mouse. Hypertension. 2007; 50: 945-51, CrossRef.

Marx N, Duez H, Fruchart JC, Staels B. Peroxisome proliferator activated receptors and atherogenesis. Regulators of gene expression in vascular cells. Circ Res. 2004; 94: 1168-78, CrossRef.

Duez H, Chao YS, Hernandez M, Torpier G, Poulain P, Mundt S, et al. Reduction of atherosclerosis by the peroxisome proliferator-activated receptor agonist fenofibrate in mice. J Biol Chem. 2002; 277: 48051-7, CrossRef.

Vosper H, Khoudoli GA, Graham TL, Palmer CNA. Peroxisome proliferator-activated agonists, hyperlidaemia, and atherosclerosis. Pharm Ther. 2002; 95: 47-62, CrossRef.

Diep QN, Amiri F, Touyz RM, Cohn JS, Endemann D, Schiffrin EL. PPARα activator effects on ANG II-induced vascular oxidative stress and inflammation. Hypertension. 2002; 40: 866-71, CrossRef.

Iglarz M, Touyz RM, Amiri F, Lavoie MF, Diep QN, Schiffrin EL. Effect of peroxisome proliferator-activated receptor-α and -γ activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol. 2003; 23: 45-51, CrossRef.

Banks T, Oyekan A. Peroxisome proliferator-activated receptor a activation attenuated angiotensin type 1-mediated but enhanced angiotensin type 2-mediated hemodynamic effects to angiotensin II in the rat. J Hypertension. 2008; 26: 468-77, CrossRef.

Granger JP. Endothelin. Am J Physiol Regul Integr Comp Physiol. 2003; 285: R298-R301, CrossRef.

Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 1994; 46: 325-415, PMID.

Pollock DM. Renal endothelin in hypertension. Curr Opin Nephrol Hypertens. 2000; 9: 157-64, CrossRef.

Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002; 82: 131-85, CrossRef.

Alonso-Galicia M, Frohlich B, Roman RJ. Induction of P4504A activity improves pressure-natriuresis in Dahl S rats. Hypertensio. 1998; 31: 232-6, CrossRef.

Roman RJ, Ma YH, Frohlich B, Markham B. Clofibrate prevents the development of hypertension in Dahl salt-sensitive rats. Hypertension. 1993; 21: 985-8, CrossRef.

Dos Santos EA, Dahly-Vernon AJ, Hoagland KM, Roman RJ. Inhibition of the formation of EETs and 20-HETE with 1-aminobenzotriazole attenuates pressure natriuresis. Am J Physiol Regul Integr Comp Physiol. 2004; 287: R58-R68, CrossRef.

Zhang YB, Magyar CE, Holstein-Rathlou NH, McDonough AA. The cytochrome P-450 inhibitor cobalt chloride prevents inhibition of renal Na+,K+-ATPase and redistribution of apical NHE-3 during acute hypertension. J Am Soc Nephrol. 1998; 9: 531-7, PMID.

Hoagland KM, Flasch AK, Roman RJ. Inhibitors of 20-HETE formation promote salt-sensitive hypertension in rats. Hypertension. 2003; 42: 669-73, CrossRef.

Hoagland KM, Flasch AK, Dahly-Vernon AJ, dos Santos EA, Knepper MA, Roman RJ. Elevated BSC-1 and ROMK expression in Dahl saltsensitive rat kidneys. Hypertension. 2004; 43: 860-5, CrossRef.

Wilson TW, Alonso-Galicia M, Roman RJ. Effects of lipidlowering agents in the Dahl salt-sensitive rat. Hypertension. 1998; 31: 225-31, CrossRef.

Williams JM, Zhao X, Wang MH, Imig JD, Pollock DM. Peroxisome proliferator-activated receptor-α activation reduces salt-dependent hypertension during chronic endothelin B receptor blockade. Hypertension. 2005; 46: 366-71, CrossRef.

Subramanian S, DeRosa MA, Bernal-Mizrachi C, Laffely N, Cade WT, Yarasheski KE, et al. PPARα activation elevates blood pressure and does not correct glucocorticoid-induced insulin resistance in humans. Am J Physiol Endocrinol Metab. 2006; 291: E1365-E1371, CrossRef.

Weatherford ET, Itani H, Keen HL, Sigmund CD. Is peroxisome proliferator-activated receptor-γ a new “Pal” of renin? Hypertension. 2007; 50: 844-6, CrossRef.

Shi Q, Gross KW, Sigmund CD. Retinoic acid-mediated activation of the mouse renin enhancer. J Biol Chem. 2001; 276: 3597-603, CrossRef.

Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002; 110: 229-38, CrossRef.

Sugawara A, Takeuchi K, Uruno A, Ikeda Y, Arima S, Kudo M, et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferatoractivated receptor-gamma in vascular smooth muscle cells. Endocrinology. 2001; 142: 3125-34, CrossRef.

Grundy SM, Hansen B, Smith SC Jr, Cleeman JI, Kahn RA. Clinical management of metabolic syndrome: report of the Am Heart Association/National Heart, Lung, and Blood Institute/Am Diabetes Association conference on scientific issues related to management. Circulation. 2004; 109: 551-6, CrossRef.

Szapary PO, Bloedon LT, Samaha FF, Duffy D, Wolfe ML, Soffer D, et al. Effects of pioglitazone on lipoproteins, inflammatory markers, and adipokines in nondiabetic patients with metabolic syndrome. Arterioscler Thromb Vasc Biol. 2006; 26: 182-8, CrossRef.

Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diab Care. 2001; 24: 683-9, CrossRef.

Stern MP, Williams K, Gonzalez-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve indentification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diab Care. 2004; 27: 2676-81, CrossRef.

Cignarella A, Bellosta S, Corsini A, Bolego C. Hypolipidemic therapy for the metabolic syndrome. Pharmacol Res. 2006; 53: 492-500, CrossRef.

Semple RK, Chatterjee VK, O’Rahilly S. PPARγ and human metabolic disease. J Clin Invest. 2006; 116: 581-9, PMID.

Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287: 356-9, CrossRef.

Szapary PO, Rader DJ. The TG-high-density lipoprotein axis: an important target of therapy? Am Heart J. 2004; 148: 211-21, CrossRef.

Barish GD, Narkar VA, Evans RM. PPARδ: A dagger in the heart of the metabolic syndrome. J Clin Invest. 2006; 116: 590-7, CrossRef.

Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005; 365: 1415-28, CrossRef.

Grundy SM. Point: the metabolic syndrome still lives. Clin Chem. 2005; 51: 1352-4, CrossRef.

Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004; 89: 2548-56, CrossRef.

Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia. 2002; 45: 1201-10, CrossRef.

Perseghin G. Muscle lipid metabolism in the metabolic syndrome. Curr Opin Lipidol. 2005; 16: 416-20, CrossRef.

Yki-Jarvinen H. Fat in the liver and insulin resistance. Ann Med. 2005; 37: 347-56, CrossRef.

Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes Relat Metab Disord. 2004; 28 (Suppl 4): S12-S21, CrossRef.

Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes. 2004; 5:219-26, CrossRef.

Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med. 2006; 119: S10-S16, CrossRef.

Blaschke F, Takata Y, Caglayan E, Law RE, Hsueh WA. Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arteriocler Throm Vasc Biol. 2006; 26: 28-40, PMID.

Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev. 2003; 14: 447-55, CrossRef.

Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, et al. Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest. 2000; 105: 1243-5452, CrossRef.

Cassis LA, Saye J, Peach MJ. Location and regulation of rat angiotensinogen messenger RNA. Hypertension. 1988; 11: 591-6, CrossRef.

Cigolini M, Tonoli M, Borgato L, Frigotto L, Manzato F, Zeminian S, et al. Expression of plasminogen activator inhibitor-1 in human adipose tissue: a role for TNF-alpha? Atherosclerosis. 1999; 143: 81-90, CrossRef.

Lijnen HR. Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost. 2005; 3: 35-44, CrossRef.

Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002; 277: 25863-6, CrossRef.

Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003; 278: 2461-8, CrossRef.

Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocytederived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMPdependent pathway. Circulation. 2000; 102: 1296-301, CrossRef.

Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005; 307: 426-30, CrossRef.

Riserus U, Sprecher D, Johnson T, Olson E, Hirschberg S, Liu A, et al. Activation of peroxisome proliferator–activated receptor (PPAR)γ promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes. 2008; 57: 332-9, CrossRef.

Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest. 2004; 113: 764-73, CrossRef.

Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006; 116: 1793-801, CrossRef.

Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006; 444: 860-7, CrossRef.

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003; 112: 1796-808, CrossRef.

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003; 112: 1821-30, CrossRef.

Odegaard Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, et al. Macrophage specific PPARγ controls alternative activation and improves insulin resistance. Nature. 2007; 447: 1116-21, CrossRef.

Brown JD, Plutzky JP. Peroxisome proliferator-activated receptor as transcriptional nodal points and therapeutic targets. Circulation. 2007; 115: 518-33, CrossRef.

Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome – an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005; 112: 2735-52, CrossRef.

Chinnetti-Gbaguidi G, Fruchart JC, Staels B. Role of PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: New approach to therapies. Curr Opin Pharmacol. 2005; 5: 177-83, CrossRef.

Tordjman K, Bernal-Mizrachi C, Zemany L, Weng S, Feng C, Zhang F, et al. PPARα Deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest. 2001; 107: 1025-34, CrossRef.

Berger JP. Akiyama TE, Meinke PT. PPARs: Therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005; 26: 244-51, CrossRef.

Maragoudakis ME, Hankin H. On the mode of action of lipidlowering agents. V. Kinetics of the inhibition in vitro of rat acetyl coenzyme A carboxylase. J Biol Chem. 1971; 246: 348-58, PMID.

Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998; 98: 2088-93, CrossRef.

Heller F, Harvengt C. Effects of clofibrate, bezafibrate, fenofibrate and probucol on plasma lipolytic enzymes in normolipaemic subjects. Eur J Clin Pharmacol. 1983; 25: 57-63, CrossRef.

Staels B, Vu-Dac N, Kosykh VA, Saladin R, Fruchart JC, Dallongeville J, et al. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates. J Clin Invest. 1995; 95: 705-12, CrossRef.

Malmendier CL, Delcroix C. Effects of fenofibrate on high and low density lipoprotein metabolism in heterozygous familial hypercholesterolemia. Atherosclerosis. 1985; 55: 161-9, CrossRef.

Mellies MJ, Stein EA, Khoury P, Lamkin G, Glueck CJ. Effects of fenofibrate on lipids, lipoproteins, and apolipoproteins in 33 subjects with primary hypercholesterolemia. Atherosclerosis. 1987; 63: 57-64, CrossRef.

Knopp RH, Walden CE, Warnick GR, Albers JJ, Ginsberg J, McGinnis BM. Effect of fenofibrate treatment on plasma lipoprotein lipids, high density lipoprotein cholesterol subfractions, and apolipoproteins B, AI, AII, and E. Am J Med. 1987; 83: 75-84, CrossRef.

Bard JM, Parra HJ, Camare R, Luc G, Ziegler O, Dachet C, et al. A multicenter comparison of the effects of simvastatin and fenofibrate therapy in severe primary hypercholesterolemia, with particular emphasis on lipoproteins defined by their apolipoprotein composition. Metabolism. 1992; 41: 498-503, CrossRef.

Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, et al. PPAR-γ and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001; 7: 53-8, CrossRef.

Li AC, Binder CJ, Gutierrez A, Brown KK, Plotkin CR, Pattison JW, et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J Clin Invest. 2004; 114: 1564-76, CrossRef.

Mardones P, Pilon A, Bouly M, Duran D, Nishimoto T, Arai H, et al. Fibrates down-regulate hepatic scavenger receptor class B type I protein expression in mice. J Biol Chem. 2003; 278: 7884-90, CrossRef.

Tokuno A, Hirano T, Hayashi T, Mori Y, Yamamoto T, Nagashima M, et al. The effects of statin and fibrate on lowering small dense LDL-cholesterol in hyperlipidemic patients with type 2 diabetes. J Atheroscler Thromb. 2007; 14: 128-32, CrossRef.

Barter PJ, Rye KA. Is there a role for fibrates in the management of dyslipidemia in the metabolic syndrome? Arterioscler Thromb Vasc Biol. 2008; 28: 39-46, CrossRef.

Picard F, Auwerx J. PPAR(gamma) and glucose homeostasis. Annu Rev Nutr. 2002; 22: 167-97, CrossRef.

Miyazaki Y, Mahankali A, Matsuda M, Jean H, Kenneth C, Mandarino LJ, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2002; 87: 2784-91, CrossRef.

Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda H, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002; 8: 731-7, CrossRef.

Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, et al. Role of adiponectin in preventing vascular stenosis: the missing link of adipo-vascular axis. J Biol Chem. 2002; 277: 37487-91, CrossRef.

Peraldi P, Spiegelman B. TNF-alpha and insulin resistance: summary and future prospects. Mol Cell Biochem. 1998; 182: 169-75, CrossRef.

Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001; 409: 307-12, CrossRef.

Berger J, Tanen M, Elbrecht A, Hermanowski-Vosatka A, Moller DE, Wright SD, et al. Peroxisome proliferatoractivated receptor gamma ligands inhibit adipocyte 11beta-hydroxysteroid dehydrogenase type 1 expression and activity. J Biol Chem. 2001; 276: 12629-35, CrossRef.

Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001; 294: 2166-70, CrossRef.

Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adiposederived protein. Diabetes. 2001; 50: 2094-9, CrossRef.

Walker BR. How will we know if 11beta-hydroxysteroid dehydrogenases are important in common diseases. Clin Endocrinol (Oxf ). 2000; 52: 401-2, CrossRef.

Samaha FF, Szapary PO, Iqbal N, Williams MM, Bloedon LT, Kochar A, et al. Effects of rosglitazone of lipids, adipokines, and inflammatory markers in nondiabetic patients with low high-density lipoprotein cholesterol and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2006; 26: 624-30, CrossRef.

Chinetti G, Zawadski C, Fruchart JC, Staels B. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochem Biophys Res Commun. 2004; 314: 151-8, CrossRef.

Tiikkainen M, Hakkinen AM, Korsheninnikova E, Nyman T, Makimattila S, Yki-Jarvinen H. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes. 2004; 53: 2169-76, CrossRef.

Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004; 291: 1730-7, CrossRef.

Junga HS, Younb BS, Choa YM, Yub KY, Parkb HJ, Shina CS, et al. The effects of rosiglitazone and metformin on the plasma concentrations of resistin in patients with type 2 diabetes mellitus. Metabolism. 2005; 54: 314-20, CrossRef.

Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005; 111: 932-9, CrossRef.

Lehrke M, Reilly M, Millington S, Iqbal N, Rader D, Lazar MA. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med. 2004; 1: 161-8, CrossRef.

Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation. 2002; 106: 679-84, CrossRef.

Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol. 2003; 42: 1757-63, CrossRef.

Wang TD, Chen WJ, Lin JW, Chen MF, Lee YT. Effects of rosiglitazone on endothelial function, C-reactive protein, and components of the metabolic syndrome in nondiabetic patients with the metabolic syndrome. Am J Cardio. 2004; 93: 362-5, CrossRef.

Yki-Järvinen H. Thiazolidinediones. N Engl J Med. 2004; 351: 1106-18, CrossRef.

Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, et al. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPARalpha) reduce myocardial infarct size. FASEB J. 2002; 16: 1027-40, CrossRef.

Mori Y, Itoh Y, Obata T, Tajima N. Effects of pioglitazone vs glibenclamide on postprandial increases in glucose and TG levels and on oxidative stress in Japanese patients with type 2 diabetes. Endocrine. 2006; 29: 143-8, CrossRef.

Campia U, Matuskey LA, Panza JA. Peroxisome proliferatoractivated receptor-gamma activation with pioglitazone improves endothelium-dependent dilation in nondiabetic patients with major cardiovascular risk factors. Circulation. 2006; 113: 867-75, CrossRef.

Sourij H, Zweiker R, Wascher TC. Effects of pioglitazone on endothelial function, insulin sensitivity, and glucose control in subjects with coronary artery disease and new-onset type 2 diabetes. Diabetes Care. 2006; 29: 1039-45, CrossRef.

Ceriello A. Thiazolidinediones as anti-inflammatory and anti-atherogenic agents. Diabetes Metab Res Rev. 2008; 24: 14-26, CrossRef.

Goldfine AB. The Rough Road for Rosglitazone. Curr Opin Endocrinol Metab. 2008; 15: 113-7, CrossRef.

Home PD, Phil D, Pocock SJ, Beck-Nielsen H, Gornis R, Hanefeld M, et al>. Rosglitazone evaluated for cardiovascular outcomes – An interim analysis. N Engl J Med. 2007; 357: 28-38, CrossRef.

Miller NE, Thelle DS, Forde OH, Mjos OD. The tromso heartstudy. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet. 1977; 1: 965-8, PMID.

Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis. 1988; 8: 737-41, CrossRef.

Benoit P, Emmanuel F, Caillaud JM, Bassinet L, Castro G, Gallix P, et al. Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models. Circulation. 1999; 99: 105-10, CrossRef.

van der Veen JN, Kruit JK, Havinga R, Baller JF, Chimini G, Lestavel S, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res. 2005; 46: 526-34, CrossRef.

Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonist. Diabetes. 2005; 54: 2460-70, CrossRef.

Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004; 53: 2087-94, CrossRef.

National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res. 1988; 6 (Suppl. 2): 51S-209S, PMID.

Wood AJJ, Yanovski SZ, Yanovski JA. Obesity. N Engl J Med. 2002; 346: 591-602, CrossRef.

Lee CH, et al. PPAR delta is a potent insulin sensitizer. Proc Natl Acad Sci USA. 2006; in press.

Flévet C, Fruchart JC, Staels B. PPARα and PPARγ dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol. 2006; 6: 606-14, CrossRef.

Harrity T, Farrelly D, Tieman A, Chu C, Kunselman L, Gu L, et al. Muraglitazar, a novel dual (α/γ) peroxisome proliferator-activated receptor activator, improves diabetes and other metabolic abnormalities and preserves β-cell function in db/db mice. Diabetes 2006; 55: 240-8, CrossRef.

Fagerberg B, Edward S, Halmos T, Lopatynsky J, Schuster H, Stender S, et al. Tesaglitazar, a novel dual peroxisome proliferator-activated receptor α/γ agonist, dose-dependently improves the metabolic abnormalities associated with insulin resistance in a non-diabetic population. Diabetologia. 2005; 48: 1716-25, CrossRef.

Han KL, Choi JS, Lee JY, Song J, Joe MK, Jung MH. Therapeutic potential of peroxisome proliferator -activated receptor-α/γ dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes. Diabetes. 2008; 57: 737-45, CrossRef.




DOI: https://doi.org/10.18585/inabj.v1i1.79

Copyright (c) 2009 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                   

 

 

The Prodia Education and Research Institute