The Indonesian Biomedical Journal, Vol.2, No.1, April 2010, p.4-25

ROBEMAELEE s R TC], H

Print ISSN: 2085-3297, Online ISSN: 2355-9179

The Search for Biomarkers in Alzheimer's Disease

Anna Meiliana'?* and Andi Wijaya'?*

"Post Graduate Program in Clinical Biochemistry, Hasanuddin University, Makassar
?Prodia Clinical Laboratory, Jakarta
*Address comrespondence to this author at: Prodia Clinical Laboratory, JI. Cisangkuy No_2, Bandung.
E-mail: anna_m@prodia co.id, andi_w@prodia.co.id

Abstract

ACKGROUND: As population demographic shift

and the number of individuals with Alzheimer

Disease (AD) continue to increase, the challenge
is to develop targeted. effective treatments and our ability
to recognize early symptoms. In view of this. the need for
specific AD biomarker is crucial.

CONTENT: In recent years it has become evident that CSF
concentrations of some brain — specific proteins are related
to underlying disease pathogenesis and may therefore aid
clinical investigation. Among several, we have focused
on three candidates that have been suggested to fulfil
the requirements for biomarkers of AD: [} - amyloid 42
(Ap42), total Tau (T-tau) and tau phosphorylated at various
epitopes (P-tau). An increasing number of studies suggest
that supplementary use of these CSF markers, preferably in
combination, adds to the accuracy of an AD diagnosis.
More recently visinin — like protein (VLP-1). a marker
for neuronal cell injury has been studied. CSF VLP-1
concentrations were 50% higher in AD patients than in the
control population.

SUMMARY: The number of studies aimed at the
identification of new biomarkers for AD is expected to
increase rapidly. not only because of the increasing insights
into the pathological mechanisms underlying this disease,
but also because new therapies have been developed or
are under consideration now, which warrant an early and
specific diagnosis for effective treatment of the patients.

KEYWORDS: Dementia, Amyloid Plaque, Neuro-
fibrillary Tangels. Amyloid (3-peptide 42 (Ap42). Total Tau
(T-tau), Phosphorylated Tau (P-tau), visinin—like protein 1
(VLP-1).

Introduction

Alzheimer’s disease is a progressive and fatal neuro-
degenerative disorder manifested by cognitive and memory
deterioration, progressive impairment of activities of daily
living, and a variety of neuropsychiatric symptoms and
behavioral disturbances (1).

According to the World Health Organization., an
estimated 37 million people worldwide currently have
dementia; Alzheimer disease affects about 18 million
of them (2). Increasing age is the greatest risk factor for
Alzheimer disease. Its prevalence approximately doubles
every five years after the age of 60 —one in 10 individuals
over 65 years and nearly half of those over 85 are affected
by the disease. So, although the incidence rate of Alzheimer
disease is not thought to be changing, Alzheimer disease
poses one of the greatest threats to the future of healthcare
systems. owing to the anticipated demographic shift to an
aging population—the number of people worldwide above
the age of 60 years is expected to double over the next 25
years (3).

Alois Alzheimer first described plaques and tangles
that characterize the diseased brain nearly 100 years ago.
The dense tangles are a feature in many different dementias,
but amyloid plaques in the brain are unique to Alzheimer
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disease (4). Thus the major hallmarks of Alzheimer disease
are amyloid-f (Ap)-containing plaques, tau containing
neurofibrillary tangles (NFTs) and progressive neuronal
loss accompanied by cognitive decline. Although plaques
and NFTs are pathognomic, it would be misleading to
create the impression that these are the only significant
pathological changes occurring in the AD brain. In fact,
numerous other structural and functional alterations ensue,
including inflammatory responses and oxidative stress
(6-8). The combined consequences of all the pathological
changes. including the effects of the A} and tau pathologies,
is severe neuronal and synaptic dysfunction and loss; at the
time of death, the brain of a patient with AD may weigh
one-third less than the brain of an age-matched, non-
demented individual (9).

These figures underscore the urgency of seeking
more effective therapeutic interventions for patients with
Alzheimer’s disease (1). Treatment requires accurate
diagnosis and increasingly is based on an understanding of
the pathophysiology of the disease (1).

The diagnosis of Alzheimer’s disease is most often
based on the criteria developed by the National Institute
of Neurologic and Communicative Disorders and Stroke—
Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) (10), according to which the diagnosis
is classified as definite (clinical diagnosis with histologic
confirmation), probable (typical clinical syndrome without
histologic confirmation), or possible (atypical clinical
features but no alternative diagnosis apparent: no histologic
confirmation). Typical sensitivity and specificity values for
the diagnosis of probable Alzheimer’s disease with the use
of these criteria are 65% and 75%, respectively (1.11).

Definitive diagnosis of Alzheimer disease can only be
performed by examining the neuropathological features of
the disease —amyloid plaques and neurofibrillary tangles —
at autopsy. Nevertheless, in the day-to-day clinical setting.
a variety of methods are used, and research has suggested
that this can be considered 87% effective compared with
autopsy. Early diagnosis is beneficial for the patients, as
they can be treated early and any comorbidities can be
monitored, as well as for their families. who can receive
additional support (3.12).

Recent research on CSF biomarkers has focused on
early diagnosis, and several studies have shown a high
predictive value for identification of prodromal Alzheimer’s
disease in mild cognitive impairment (MCI) (13). A large
study with extensive clinical follow-up that assessed the
ability of

CSF biomarkers to predict incipient Alzheimer’s
disease in MCI cases reported a sensitivity of 95% at a
specificity of 83-87% for different combinations of
biomarkers (14).
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Epidemiology and Risk Factors

Alzheimer’s disease 1s the most common form of dementia,
accounting for 50-60% of all cases. The prevalence of
dementia is below 1% in individuals aged 60-64 years, but
shows an almost exponential increase with age, so that in
people aged 85 years or older the prevalence is between
24% and 33% in the Western world. Representative data
from developing countries are sparse, but about 60% of
patients with dementia are estimated to live in this part of
the world. Alzheimer’s disease is very common and thus
is a major public health problem. In 2001, more than 24
million people had dementia, a number that is expected to
double every 20 years up to 81 million in 2040 because of
the anticipated increase in life expectancy. (15).

Besides aging. which is the most obvious risk factor
for the disease, epidemiological studies have suggested
several tentative associations. Some can be linked to a
decreased reserve capacity of the brain, including reduced
brain size, low educational and occupational attainment,
low mental ability in early life, and reduced mental
and physical activity during late life (16.17). The brain
reserve capacity is determined by the number of neurons
and their synaptic and dendritic arborisation together
with lifestyle-related cognitive strategies. A low reserve
capacity has been linked with early presentation of some
pathological changes of the disease (16). Moreover, several
epidemiological studies have shown that head injury could
be a risk factor (18). Whether brain trauma initiates the
pathogenic cascade leading to plaque and tangle formation
or whether it simply reduces the brain reserve capacity is
unclear (33).

Other risk factors are associated with wvascular
disease, including hypercholesterolaemia, hypertension,
atherosclerosis, coronary heart disease, smoking. obesity,
and diabetes (16). Whether these are true causal risk factors
for Alzheimer’s disease, driving the pathogenic processes
resulting in plaque and tangle formation. or whether they
induce cerebrovascular pathology, which adds to clinically
silent disease pathology thus exceeding the threshold for
dementia, needs to be established. Some evidence suggests
that dietary intake of homocysteine-related vitamins
(vitamin B12 and folate); antioxidants, such as vitamin
C and E; unsaturated fatty acids; and also moderate
alcohol intake, especially wine, could reduce the risk of
Alzheimer’s disease (19), but data so far are not conclusive
to enable any general dietary recommendations to be made.
Although environmental factors might increase the risk of
sporadic Alzheimer’s disease, this form of the disease has
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been shown to have a significant genetic background. A
large population-based twin study showed that the extent
of heritability for the sporadic disease is almost 80% (20).

Familial Alzheimer’s disease is an autosomal dominant
disorder with onset before age 65 years. The first mutation
causing the familial form of the disease was identified in
the amyloid precursor protein (APP) gene on chromosome
21 (21). When investigating other families with the familial
disease, several additional APP mutations were found.
However, these mutations explain only a few familial cases.
Instead, mutations in the highly homologous presenilin 1
(PSENI) and presenilin 2 (PSEN2) genes account for most
cases of familial disease (22.23). However, the familial
form of the disease is rare, with a prevalence below 0.1%
(24).

In 1993, two groups independently reported an
association between the apolipoprotein E (APOE) g4 allele
and Alzheimer’s disease (25,26). Meta-analysis shows that
the APOE ¢4 allele increases the risk of the disease by three
times in heterozygotes and by 15 times in homozygotes
(27). The APOE g4 allele operates mainly by modifying
age of onset (28), with each allele copy lowering the age at
onset by almost 10 years (25).The molecular mechanism for
the disease-promoting effect has been difficult to pinpoint.
ApoE acts as a cholesterol transporter in the brain with
ApoE4 being less efficient than the other variants in reuse
of membrane lipids and neuronal repair (29). On the other
hand. ApoE is essential for amyloid [} (Af}) deposition.
promoting AP fibrillisation and plaque formation (30)
possibly by acting as a pathological chaperone. The
gene-dose dependent reduction in CSF Af42 could be
associated with this process (31). The APOE ¢4 allele has
been calculated to account for most of the genetic risk in
sporadic Alzheimer’s disease (32).

Molecular Pathogenesis

Slowly but surely, Alzheimer’s disease (AD) patients lose
their memory and their cognitive abilities, and even their
personalities may change dramatically. These changes
are due to the progressive dysfunction and death of nerve
cells that are responsible for the storage and processing
of information. Although drugs can temporarily improve
memory, at present there are no treatments that can stop
or reverse the inexorable neurodegenerative process. But
rapid progress towards understanding the cellular and
molecular alterations that are responsible for the neuron’s
demise may soon help in developing effective preventative
and therapeutic strategies (34).
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Alzheimer’s disease is the most common cause of
dementia in the elderly. Extracellular amyloid plaques and
intracellular neurofibrillary tangles are defining lesions in
AD(33.35). Mounting genetic and biochemical data support
the hypothesis that amyloid-§ (Ap) accumulation and
aggregation in the brain are early and central events in the
pathogenesis of AD (33.36). A is derived from sequential
proteolytic processing of amyloid precursor protein
(APP) by p- and vy-secretases. Mutations associated with
early-onset familial AD (FAD) are dominantly inherited
and are found in the APP gene itself or in the presenilin
1 (PSENI) and PSEN2 genes, the products of which,
together with nicastrin, APH1 and PSENEN2, are essential
components of a protein complex that is responsible for
"-secretase activity (37). A common feature of most FAD
mutations is that they increase the generation of A[} peptides
or increase the proportion of the longer AR42 form, which
has a higher tendency to aggregate and is more toxic than
the shorter AB40 form (36). Because *-secretase cleavage
of a number of substrates is important for synaptic function
and neuronal survival, a loss-of-function hypothesis
for PSEN mutations in AD pathogenesis has also been
proposed (38).

One hundred years after Alois Alzheimer’s description
of the plaques and tangles in the first reported case of
Alzheimer disease, we have looked at the proteins that make
up these deposits as pathologies and have not extensively
investigated their physiologic roles. Perhaps we should
consider the possibility that AP has a function that relates
directly to its involvement in vascular pathology (39). We
know, for example, that APP is involved in blood clotting
(40) and that A[} drains from the brain along the walls of
the microvasculature (41). Perhaps we should consider the
possibility that AP has complementary damage-response
roles: (1) as an emergency sealant of the vasculature during
hemorrhage and (ii) as a neuronal depressant (42).

The aggregates of amyloid [3-peptide (A[3) in the brain
parenchyma (amyloid plaques) also in the walls of small
brain arteries, leading to cerebral amyloid angiopathy
(CAA). The degree of amyloid deposition ranges from
a thin ring of amyloid in the vessel wall to large plaque-
like extrusions into the brain parenchyma. CAA is also
associated withlocalloss of neurons, synaptic abnormalities,
microglial activation and microhaemorrhage. Clearly, such
defects will alter neuronal and synaptic function and even
at its earliest stage. amyloid deposits around brain vessels
could certainly interfere with the dynamic adaptation of
cerebral blood flow (CBF) to changing brain function
{23):

Bell et al. provide a molecular mechanism that could
explain how vascular defects may lead to reduced amyloid
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clearance, and thus Alzheimer’s pathology, by showing
that hypoxia in vascular smooth muscle cells (VSMCs)
of meningeal arterioles induces transcription factors that
regulate the expression of the low-density lipoprotein
receptor related protein 1 (44). a major efflux transporter
for AP across the blood brain barrier (45).

Alterations in the microcirculation precede the
appearance of amyloid plaque deposits and is followed
by cognitive deficits (46), indicating that an excess of Af
could lead to CAA through direct perturbation of amyloid
clearance by VSMCs. The study by Bell er al.(44) provides
a molecular model that explains how a general and quite
common circulatory problem may lead to failure of an
essential brain detoxification process (that is, the removal
of AP from the brain. Their findings also strengthen the
vascular hypothesis of AD. showing how vascular defects
may underlie the occurrence of sporadic AD (47-49).

Cerebrovascular disease and Alzheimer disease are
common diseases of aging and frequently coexist in the
same brain. Accumulating evidence suggests that the
presence of brain infarction, including silent infarction,
influences the course of Alzheimer disease. Conversely,
there is evidence that [-amyloid can impair blood vessel
function. Vascular [-amyloid deposition. also known as
CAA, is associated with vascular dysfunction in animal
and human studies. Alzheimer disease is associated with
morphological changes in capillary networks, and soluble
(-amyloid produces abnormal vascular responses to
physiological and pharmacological stimuli (50).

APP Processing and AP Generation

Brain regions involved in learning and memory processes,
including the temporal and frontal lobes, are reduced
in size in AD patients as the result of degeneration of
synapses and death of neurons. Central to the disease is
altered proteolytic processing of the amyloid precursor
protein (APP) resulting in the production and aggregation
of neurotoxic forms of Af}. Neurons that degenerate in
AD exhibit increased oxidative damage. impaired energy
metabolism and perturbed cellular calcium homeostasis; Af}
appears to be an important instigator of these abnormalities
(34).

APP is an integral membrane protein with a single
membrane-spanning domain, a large extracellular
glycosylated N terminus and a shorter cytoplasmic C
terminus—Af} is located at the cell surface (or on the

lumenal side of ER and Golgi membranes). with part of
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the peptide embedded in the membrane.

The normal functions of APP are not fully understood,
but increasing evidence suggests it has important roles in
regulating neuronal survival, neurite outgrowth, synaptic
plasticity and cell adhesion (51). APP is transported along
axons to presynaptic terminals where it accumulates at
relatively high levels, which can result in Af} deposition at
synapses. One possible function of full-length APP is as a
cell surface receptor that transduces signals within the cell
in response to an extracellular ligand (52). Physiological
roles for sAPPu are supported by data showing that
sAPPu is released from presynaptic terminals in response
to electrical activity, and that sAPPa regulates neuronal
excitability and enhances synaptic plasticity and learning
and memory, possibly by activating a cell surface receptor
that modulates the activity of potassium channels and also
activates the transeription factor NF-kf3 (53).

Synapses may be particularly susceptible to the
adverse effects of aggregating forms of Af3. as is suggested
by the ability of AP to impair synaptic ion and glucose
transporters and by electrophysiological studies showing
that Af} impairs synaptic plasticity (51,54). Ap may damage
neurons by inducing oxidative stress and disrupting cellular
calcium homeostasis (51). Coincident with the increased
production of A} in AD is a decrease in the amount of
sAPPa produced, which may contribute to the demise of
neurons because sAPPda is known to increase the resistance
of neurons to oxidative and metabolic insults (51)

Synapses are likely to be the sites at which neuronal
death is initiated in AD because they contain most of the
biochemical machinery for the initiation and execution
of apoptosis, and AP can induce apoptotic cascades in
synapses (55).

The amyloid- (Ap) peptide is derived via proteolysis
fromalargerprecursormoleculecalled theamyloid precursor
protein (APP), a type 1 transmembrane protein consisting
of 695-770 amino acids. APP can undergo proteolytic
processing by one of two pathways. Most is processed
through the nonamyloidogenic pathway, which precludes
AP formation. The first enzymatic cleavage is mediated by
a-secretase, of which three putative candidates belonging
to the family of a disintegrin and metalloprotease (ADAM)
have been identified: ADAM9. ADAMI0 and ADAMI17.
Cleavage by o-secretase occurs within the Af} domain,
thereby preventing the generation and release of the Af3
peptide. Two fragments are released, the larger ectodomain
(sAPPa) and the smaller carboxy-terminal fragment (C83).
Furthermore, C83 can also undergo an additional cleavage
mediated by y-secretase to generate P3. APP molecules
that are not cleaved by the non-amyloidogenic pathway
become a substrate for [-secretase ([3-site APP-cleaving
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enzyme 1; BACEL), releasing an ectodomain (sAPPp).
and retaining the last 99 amino acids of APP (known as
C99) within the membrane. The first amino acid of C99
is the first amino acid of Af}. C99 is subsequently cleaved
38-43 amino acids from the amino terminus to release Af},
by the ~-secretase complex, which is made up of presenilin
1 or 2, nicastrin, anterior pharynx defective and presenilin
enhancer 2. This cleavage predominantly produces Apl-
40, and the more amyloidogenic Af}1-42 at a ratio of 10:1
(9.56.57).

The toxicity associated with accumulation of AP
suggests that activation of endoproteolytic enzymes
capable of preventing generation of A might provide a
realistic target for pharmacotherapy of Alzheimer disease.
On the other hand, cleavage of APP by [5- and y-secretase
generates Af} peptides. [3-secretase, which initiates cleavage
of APP, cuts the protein at the N terminus and has been
successfully cloned. y-secretase is the second enzyme that
cleaves APP, and full understanding of its mechanism of
action has long been lacking. Reconstitution of y-secretase
activity illuminates the interaction between the various
protein components of the y-secretase complex that leads
to formation of Af} (58).

Print ISSN: 2085-3297, Online ISSN: 2355-9179

Either presenilin-1 (PS1) or presenilin-2 (PS2)
makes up the first component of the y-secretase complex.
Mutations in the genes that encode PS1 and PS2 cause a
subset of early-onset, familial Alzheimer disease. Presenilin
mutations probably act upstream of APP or tau to cause
Alzheimer disease pathology, including deposition of Af
and accumulation of hyperphosphorylated tau. Forexample.
mutant presenilins have been shown to increase formation
of the longer AP species, Af42. This species is important
for Alzheimer disease pathology because it accelerates
deposition of AP, which presumably precipitates early-
onset Alzheimer disease. Thus, disease-related mutations
in presenilin are considered to shift cleavage of APP by
v-secretase toward increased Af342 production (53).

In fact, presenilin is a part of a large. high-molecular-
weight complex with y-secretase activity. Nicastrin, the
product of a recently cloned gene, is a component of
this 7y-secretase complex (59). Overexpressing the two
genes together, however, does not ramp up *-secretase
activity (60). Instead. other proteins are required. Studies
of Notch signaling in C. elegans, which depends on
y-secretase activity (61). provide additional information
about Yy-secretase activity. Aph-1 and PEN-2 are two

| o-Secretase

| B-Secretase

l v-Secretase

J

AB40 Ap42

Nature Reviews | Neuroscience

Figure 1. Amyloid — precursor protein (APP) and its metabolites (Adapted with permission from Nature Publishing Groups).
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transmembrane proteins that are expressed upstream of
release of the Notch intracellular domain (62.63). When
these proteins are knocked down. v-secretase activity
decreases, which suggests that these two proteins may also
be involved in v-secretase activity (62.64).

The results described above indicate that four proteins
(presenilin, nicastrin, Aph-1 and PEN-2) are required for
-secretase activity, but none of them generate y-secretase
activity on their own; an increase in activity is only possible
when the four proteins are overexpressed together (58.64).
Thus, it is clear that these four proteins are essential
components needed for y-secretase activity (65).

Fahihi et al. (66) report that expression of the
noncoding antisense RNA for BACE1 —which is the rate
limiting enzyme in A[} synthesis—is elevated in the brains
of individuals with Alzheimer’s disease. BACE! antisense
RNA increases AP production by stabilizing the BACE]
mRNA and results in increased BACE] protein expression
and activity. AP} in turn subtly induces the expression of
this antisense RINA. I vitro, at least, this induction sets up
a feed forward mechanism, which reiteratively accelerates
Ap production and then BACE] expression. If the same
holds true in vivo, this feed-forward could theoretically
cause an ever accelerating tempo of disease (67).

Tau Phosphorylation and NFT

The accumulation of proteinacious fibrillary substances
(such as senile plaques (SPs) made of f-amyloid (Af}). or
neurofibrillary tangles (NFTs) made of tau). but significant
circumstantial evidence also clearly implicates these
aggregates in the onset and progression of most aging-
related neurodegenerative disorders that manifest clinically
with progressive cognitive and/or motor impairments. In
the case of neurodegenerative tauopathies — a group of
disorders that includes Alzheimer’s disease (AD) and the
frontotemporal dementias (FTDs) — NFTs consisting of
aggregated straight or paired helical filaments (SFs and
PHFs, respectively). twisted ribbons or other conformations
(68) of aberrantly phosphorylated forms of the microtubule-
associated protein (MAP) tau are the diagnostic hallmark
lesions in the CNS (69). It is increasingly evident that
tau-mediated neurodegeneration may result from the
combination of toxic gains-of-function acquired by the
aggregates or their precursors and the detrimental effects
that arise from the loss of the normal function(s) of tau in
the disease state.
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The primary function of the MAP tau, which is
particularly abundant in the axons of neurons. is to stabilize
MTs. There are six major isoforms of tau expressed in the
adult human brain, all of which are derived from a single
gene by alternative splicing. From a structural stand-point,
tau is characterized by the presence of a MT-binding
domain, which is composed of repeats of a highly conserved
tubulin binding motif (70) and which comprises the
carboxyterminal (C-terminal) half of the protein, followed
by a basic proline-rich region and an acidic amino-terminal
(N-terminal) region, which is normally referred to as the
‘projection domain’.

Interestingly, although the primary function of the
MT-binding domain of tau is the stabilization of MTs,
various lines of investigation have indicated that it may
also engage with other structures and enzymes, including
RNA (71) and presenilin 1 (PS1) (72). Similarly, numerous
possible binding partners have been proposed for both
the proline-rich and the projection domains (the SH3
domains of sre-family tyrosine kinases such as FYN, and
the plasma membrane (74,75), respectively). Collectively
these findings support the notion that tau might be a
rather promiscuous binder that is prone to heterogeneous
interactions — particularly when disengaged from the MT
— which may lead to protein misfolding and aggregation
(76).

Under pathological conditions, the equilibrium of tau
binding to the MTs is perturbed. resulting in an abnormal
increase in the levels of the free (unbound) tau fraction. It
is likely that the resultant higher cytosolic concentrations
of tau increase the chances of pathogenic conformational
changes that in turn lead to the aggregation and fibrillization
of tau (76).

Under physiological conditions, single tau molecules
are typically phosphorylatedat a subset of potential
phosphate-acceptor amino-acid residues. During late
stage neurodegeneration. the phosphorylation state of a
single tau molecule can reach such high levels that many
or most of these residues are phosphorylated and. at the
same time, a higher proportion of tau molecules are in
this hyperphosphorylated state. Although several kinases
have been found to be capable of phosphorylating tau in
vitro, it is not yet clear whether all of them participate in
tau phosphorylation under physiological or pathological
conditions in wvivol. Nonetheless. glycogen synthase
kinase 3 (GSK3). cyclin-dependent kinase 5 (CDKS) and
the microtubule-affinity-regulating kinase (MARK) have
received particular attention as potential targets for disease-
modifying therapies using inhibitory compounds (77).
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The overall effect of the increased rate and/or state of
phosphorylation appears to be the abnormal disengagement
of tau from the MTs. Furthermore, it is likely that various
other pathological events, including Aff-mediated toxicity,
as well as oxidative stress and inflammation, may be able
to trigger or contribute (independently or in combination)
to an abnormal detachment of tau from the MTs (78-81).
As described above, in AD and related neurodegenerative
disorders that are collectively referred to as tauopathies
(82,83), tau no longer binds to the MTs; instead it becomes
sequestered into NFTs in neurons, and into glial tangles in
astrocytes or oligodendroglia (69).

The discovery that the total level of NFTs correlates
with the degree of cognitive impairment (85.86) provided
the initial circumstantial evidence to suggest that toxic
gains-of-function by NFTs might play an important part in
then progression of the disease.

Mitochondrial Dysfunction
and Oxidative Stress

Many lines of evidence suggest that mitochondria have a
central role in aging-related neurodegenerative diseases.
Mitochondria are critical regulators of cell death, a key
feature of neurodegeneration. Mutations in mitochondrial
DNA and oxidative stress both contribute to aging, which
is the greatest risk factor for neurodegenerative diseases.
In all major examples of these diseases there is strong
evidence that mitochondrial dysfunction occurs early and
acts causally in disease pathogenesis (87).

There is extensive literature supporting a role for
mitochondrial dysfunction and oxidative damage in the
pathogenesis of AD. Oxidative damage occurs early in the
AD brain, before the onset of sigmficant plaque pathology
(88). Oxidative damage also precedes A} deposition in
transgenic APP mice (89), with upregulation of genes
relating to mitochondrial metabolism and apoptosis
occurring even earlier and co-localizing the neurons
undergoing oxidative damage (90). Moreover, such
oxidative damage and mitochondrial dysfunction probably
contribute causally to AD-related pathology.

Several pathways connecting oxidative stress and
AD pathology have recently been uncovered. Oxidative
stress may activate signaling pathways that alter APP or
tau processing. For example, oxidative stress increases the
expressionof [}-secretase through activation of c-Jun amino-
terminal kinase and p38 mitogen-activated protein kinase
(MAPK) (91), and increases aberrant tau phosphorylation
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by activation of glycogen synthase kinase 3 (92). Oxidant-
induced inactivation of critical molecules may also be
important. In a proteomic study. the prolyl isomerase PIN1
was found to be particularly sensitive to oxidative damage
(93). PIN1 catalyses protein conformational changes that
affect both APP and tau processing.

Functional complexes with vy-secretase activity,
which is essential to cleave APP and create amyloid-f3.
have been found in mitochondria (94). Insulin degrading
enzyme (IDE), which is important for amyloid-f} removal,
can be targeted to mitochondria by alternative translation
initiation (95). The presequence peptidase PreP, which is
localized to the mitochondrial matrix and is responsible for
degrading presequences and other short peptides, can also
degrade amyloid-f3 (96).

The calcium overload of mitochondria results in the
opening of the mitochondrial permeability transition pore
(mPTP) (97). a large channel in the inner mitochondrial
membrane. Its opening allows uncontrolled bidirectional
passage of large molecules, which results in the functional
and structural disintegration of mitochondria — akin to an
activation of a natural self destruction facility built into the
complicated mitochondrial fabric (98).

Park et al report that NADPH oxidase. the major
source of free radicals in blood vessels, is responsible for
the cerebrovascular dysregulation induced by Af. Thus,
the free-radical production and the associated alterations
in vasoregulation induced by A are abrogated by the
NADPH oxidase peptide inhibitor gp9lds-tat and are
not observed in mice lacking the catalytic subunit of
NADPHozxidase (gp91phox). Furthermore. oxidative stress
and cerebrovascular dysfunction do not occur in transgenic
mice overexpressing the amyloid precursor protein but
lacking gp91phox. The mechanisms by which NADPH
oxidase-derived radicals mediate the cerebrovascular
dysfunction involve reduced bicavailability of nitric oxide.
Thus, a gp9lphox-containing NADPH oxidase is the
critical link between Af} and cerebrovascular dysfunction,
which may underlie the alteration in cerebral blood flow
regulation observed in AD patients (99).

Finally, several recent reports suggest that many of
the proteins implicated in AD pathogenesis have direct
physical involvement with mitochondria or mitochondrial
proteins (87).

Inflammation

In addition to AP deposition, neurofibrillary tangle
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accumulation, and neuronal loss, the end-stage pathology
of AD is also notable for the presence of numerous cellular
and molecular markers of an inflammatory response that
are often associated with the Af} deposits (100). The cellular
nflammatory response consists of widespread astrogliosis
and microgliosis. A large number of molecular markers
of inflammation are also increased. including multiple
cytokines, interleukins. other acute-phase proteins. and
complement components. Af} aggregates appear capable
of inciting an inflammatory response, and there is evidence
that inflammation can promote increased Af} production
and also enhance AP deposition (100). Thus. an Af-
induced inflammatory response could promote further Ap
accumulation and increased inflammation. Alternatively,
it is possible that under certain circumstances the
inflammatory response is beneficial and may actually
promote Af} clearance (101).

Inflammation clearly occurs in pathologically
vulnerable regions of the AD brain, and it does so with the
full complexity of local peripheral inflammatory responses.
In the periphery, degenerating tissue and the deposition of
highly insoluble abnormal materials are classical stimulants
of inflammation (100).

Tesseur et al. report that the expression of TGF-f} type
IT receptor (TPRII) by neurons is reduced very early in the
course of AD and that reduced TGF-f} signaling increased
AP deposition and neurodegeneration in a mouse model
of AD (102). Thus, reduced TPRII levels indicate a likely
dysfunction in TGF-fj~mediated neuroprotective signaling
events in the AD brain. Reduced TGF-f§ signaling.
therefore, may lead to neurotrophic factor deficiencies and
thus neuronal dysfunction (103).

It has been hypothesized that neurodegeneration
results from a chronic inflammatory response to deposited
amyloid (100,104). Alternatively, the various forms of Af
aggregates may be directly neurotoxic (105,106).

Cholesterol Metabolism
in the Brain

Emerging from the established genetic dispositions of
AD is an association between plasma cholesterol and
AD (107.108). Retrospective analysis of the effect of
cholesterol lowering HMG-CoA reductase inhibitors
(statins) on plasma cholesterol levels and coronary
heart disease suggests that statins significantly reduce
AD development. One study of 57,104 patients over 60
years of age who were taking lovastatin or pravastatin
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showed a 60-73% lower incidence of AD (109). Another
study concluded that individuals 50 years and older who
were treated with statins had a substantially lower risk
of developing dementia. independent of the presence or
absence of hyperlipidemia (110). These suggestive clinical
observations correlate with in vivo and in vitro evidence,
indicating a role for cholesterol in APP processing and A}
generation (111).

Consistent with the in wvivo observations, plasma
membrane cholesterol levels modulate APP processing
by the a-secretase pathway in vitro (112). Treatment of
neuronal and nonneuronal cell lines with either cholesterol-
extracting agents or with statins dramatically increased
o-secretase activity and the release of the neurotrophic
APPsa fragment, and concomitantly decreased [3-secretase
activity. Moreover. cellular sites with increased APPs o
production were membrane regions with low cholesterol
concentrations and high fluidity. Statin-induced reduction
of cellular cholesterol levels resulted in reduced generation
of AB-42 and AB-40 both in vitro and in vivo (113).
Collectively, these studies support a role for cellular
cholesterol in modulating Af} production.

The mechanism by which cholesterol modulates
the proteolytic cleavage of APP is unclear. However, the
effect of cholesterol on membrane fluidity is potentially
important. As first suggested by in vitro studies, increased
plasma membrane fluidity may enhance APP/ci-secretase
interactions and «-secretase enzymatic activity (112).
In contrast, rigid cholesterol-enriched membranes may
reduce APP/0-secretase interactions and promote [- and
-secretase processing (113). In support of this suggestion,
Y-secretase activity has been identified in cholesterol-
and sphingolipidrich membrane microdomains known
as lipid rafts (113,114). Lipid rafts appear to promote
the accumulation of AP and may initiate A} aggregation
(115).

Intriguingly, apolipoprotein J, which is also secreted
by glia and is believed to be a major carrier of amyloid-f}
peptides in biological fluids (116), was transported
efficiently across the BBB in an Loco — density lipoprotein
Receptor — Related Protein 2 (LRP2) -dependent manner.
Furthermore, complexing amyloid-[342 to apolipoprotein J
enhanced amyloid-f42 clearance rates by 83% (117). This
important study shows that various transport pathways
are required to clear amyloid-j from the brain, and
highlights the quantitative and temporal contribution of
apolipoprotein E, apolipoprotein J, LRP1 and LRP2 in
mediating amyloid-[} efflux across the BBB.

Several studies have suggested that high intracellular
cholesterol concentrations increase the amyloidogenic
processing of amyloid precursor protein (APP), leading
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to greater amyloid-f} production (114,118-120). On the
other hand, low cellular cholesterol levels have been
associated with reduced amyloid-f§ generation (112,121~
125). Interestingly, APP and all of the components of
secretases (the enzymes that cleave APP), are integral
membrane proteins. Furthermore, the proteolytic activity of
"/-secretase takes place within the hydrophobic membrane
environment (125). These observations suggest that the
ABCA and ABCG classes of the ATP-binding cassette
transporter superfamily, which modulate intracellular
cholesterol trafficking and homeostasis, may play a key
role in amyloid-f3 metabolism (126).

The brain contains about 2% of the total body
cholesterol, of which most is unesterified. It is found in the
plasma membranes of glial cells, which provide structural
and metabolic support to neurons, in neuronal membranes,
and in the myelin sheaths that insulate and protect neurons.
Under normal conditions, essentially all of the cholesterol
in the brain is synthesized locally (127). The blood-
brain barrier prevents any real contribution from plasma
lipoproteins. Thus, mechanisms that remove cholesterol
from the brain are required for cholesterol homeostasis.

To be transported across the blood-brain barrier,
most cholesterol is thought to be converted to 24(S)-
hydroxycholesterol, a soluble oxysterol that can diffuse
across the barrier. enter the blood circulation, and be
taken up directly by the liver for excretion (128.129). The
enzyme suggested to perform this conversion is cholesterol
24-hydroxylase or Cyp46, a new sub-family member of the
cytochrome P450 enzymes. Cyp46 is highly expressed in
the brain (130) and is expressed in neurons in the cerebral
cortex, hippocampus, and dentate gyrus (131) (the same
neurons that are preferentially targeted in AD).

Most of the 24-hydroxycholesterol in circulation
originates from the brain (131). Since neurodegeneration
involves degradation of neuronal cell membranes
and release of cholesterol, the relationship of plasma
concentrations of this oxysterol to brain cholesterol
metabolism was examined. In a study comparing AD
subjects with healthy age-matched controls, depressed
subjects, and subjects with vascular dementia not related
to AD, the plasma levels of 24-hydroxycholesterol were
significantly elevated only in subjects with AD or vascular
dementia (132). Another study showed increased 24-
hydroxycholesterol levels in the CSF of AD subjects (133).
These results suggest that neuronal death is coupled with
increased flux of cholesterol from the brain. In addition,
24-hydroxycholesterol is neurotoxic and may directly
contribute to neurodegeneration (134). However, 24-
hydroxycholesterol concentrations are decreased in cases
of advanced AD (135). In a recent study. three statins
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(lovastatin, simvastatin, and pravastatin) and niacin
reduced plasma concentrations of 24-hydroxycholesterol
in AD subjects (136).

Adipoprotein E and Its Receptor

The vast majority of AD cases are late-onset (LOAD) and
their development is probably influenced by both genetic
and environmental risk factors. A strong genetic risk factor
for late-onset AD is the presence of the e4 allele of the
apolipoprotein E (APOE) gene ,whichencodesaprotein with
crucial roles in cholesterol metabolism. There is mounting
evidence that APOE4 contributes to AD pathogenesis by
modulating the metabolism and aggregation of amyloid-f}
peptide and by directly regulating brain lipid metabolism
and synaptic functions through APOE receptors.
Emerging knowledge of the contribution of APOE to the
pathophysiology of AD presents new opportunities for AD
therapy.

It is widely believed that impaired Af clearance is
a major pathogenic event for LOAD. A} has a relatively
short half-life in the brain. Using in vivo microdialysis
and a y-secretase inhibitor, it has been shown that Af
has a half-life of ~2 h and ~4 h in young and aged mice,
respectively (138). In human brains the AP clearance rate
is 8.3% per hour (139), indicating that A} is actively and
efficiently cleared from the brain.

There are two major pathways by which Ap is cleared
from the brain: receptor-mediated clearance by cells in the
brainparenchyma (microglia.astrocytes and neurons).along
the interstitial fluid drainage pathway or through the blood—
brain barrier (BBB): and through endopeptidase-mediated
proteolytic degradation. Receptor-mediated clearance
of Af} in the brain is likely to be mediated by the APOE
receptors LRP1. LDLR and VLDLR, which are widely
expressed in neurons, astrocytes and microglia of the brain
parenchyma, as well as in endothelial cells, astrocytes
and smooth muscle cells at the BBB and cerebral arteries.
APOE as well as LRP1 and several other LRP1 ligands (for
example, a2-macroglobulin and lactoferrin) are present
in amyloid plaques. These receptors can bind Af} directly
(141) or indirectly through A chaperones. APOE is the
best characterized AP chaperone. APOE immunoreactivity
is found in amyloid plaques (140.142), suggesting that
APOE interacts with Af} directly in AD brains.

APOE is a major apolipoprotein and a cholesterol
carrier in the bran8. In humans. the APOE gene exists
as three different polymorphic alleles (g2, €3 and &4),
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which engender six different genotypes (e2/g2. e2/e3, €2/
ed, £3/e3, e3/ed and ed/ed). €3 is the most (77%) and €2
the least (8%) common allele8. The &4 allele frequency
is ~15% 1in general populations but is M0% in patients
with AD. Individuals with one e4 allele are three to four
times as likely to develop AD than those without g4 alleles
(25.144). This odds ratio is much greater than those for
other AD risk alleles, which are typically <1.5 (144). The
effects of the g4 allele on AD risk are maximal between
60 and 70 years of age, and the prevalence of the g4 allele
in AD patients is >50%. Interestingly, the rare €2 allele is
associated with protection against LOAD compared with
the £3 allele (25).

APOE3-lipoprotein binds to Af} with higher affinity
than APOE4-lipoprotein (146). Accordingly. APOE3
clears Af} through APOE receptors on the cell surface
more efficiently than APOE4. Indeed, several studies
using different amyloid mouse models expressing either
human APOE3 or human APOE4 demonstrated that
APOE3-expressing mice develop fewer amyloid plaques
than APOE4-expressing mice (30.147.148). Post-mortem
studies have demonstrated increased amyloid plaque load
in the brains of carriers of the &4 allele for both sporadic
(149) and genetic AD cases (150). and this notion has
been confirmed by positron emission tomography imaging
studies from ‘cognitively normal’ controls (151). An
emerging body of data has identified multiple pathways
that could explain the pathogenic nature of APOE4. These
include AP production, AP clearance, A} fibrillization,
tangle formation, cholesterol homeostasis, synaptic
plasticity and repair. and neuronal toxicity

Neuronal Cell Death

Neurodegenerative diseases such as Alzheimer’s disease
and Parkinson’s disease trigger neuronal cell death through
endogenous suicide pathways. Surprisingly, although the
cell death itself may occur relatively late in the course of
the degenerative process, the mediators of the underlying
cell-death pathways have shown promise as potential
therapeutic targets (152).

Neurodegenerative diseases are associated with a
number of insults that may trigger PCD: misfolded proteins.
reactive oxygen and nitrogen species, mitochondrial-
complex inhibition, calcium entry, excitotoxicity, trophic-
factor withdrawal. and death-receptor activation to name
a few. In some cases, however, deaths occur that do not
fit neatly into any of the three classes of PCD, and these
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more controversial forms of death are also discussed below
(152).

The biochemical activation of classical apoptosis
occurs through two main pathways. These are the extrinsic
pathway, which originates through the activation of cell-
surface death receptors such as Fas, and results in the
activation of caspase-8 or -10 (153), and the intrinsic
pathway. which originates from mitochondrial release
of cytochrome ¢ and associated activation of caspase-9.
A third, less well-characterized pathway — essentially
a second intrinsic pathway — originates from the
endoplasmic reticulum (ER) and also results in the
activation of caspase-9 (154-156). Other organelles, such
as the nucleus and Golgi apparatus, have damage sensors
that link to apoptotic pathways (158).

Autophagy (referring to macroautophagy herein) is an
intracellular process that allows cells to engulf cytoplasmic
contents — both soluble molecules and large organelles
— in specialized double membranes and deliver them to
lysosomes for degradation (158). This self-eating process
is often a nonselective stress response to many extracellular
and intracellular stimuli. Autophagy is highly dynamic and
involves multiple steps, including the initial formation
of double membranes and autophagosomes and their
maturation into autolysosomes. Whether autophagosomes
are beneficial or detrimental to a cell depends on the
context (159).

The amyloid 3 (Ap) peptide is thought to be a major
culprit in AD, and its production and degradation have
been intensely investigated. Nevertheless, it remains
largely unknown how A pathology is modulated by the
autophagy pathway. The study by Pickford and colleagues
shows that beclin 1, a multifunctional protein that also plays
an important role in the autophagy pathway, affects some
aspects of AP pathology in aged but not young transgenic
mice expressing amyloid precursor protein (APP). These
findings further support the notion that modulation of
autophagy, in this case through beclin 1, may represent a
novel therapeutic strategy for AD (159).

The novel data of Grimm ez al (160) suggest that the
amyloid and associated neurodegenerative pathologies of
AD result from a self-amplifying cascade of membrane-
associated events (Fig. 2). Altered vy-secretase activity.
resulting from mutations in APP or presenilin and/or
oxidative stress, increases the AP42/AB40 ratio which, in
turn, increases SMase and HMG-CoA reductase activities.
As a consequence, levels of ceramides and cholesterol
are increased and levels of sphingomyelin are decreased
in the membranes of neurons. These alterations may
then promote further production of AR342. AP42-induced
membrane-associated oxidative stress and changes in lipid
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Figure 2. Interactions between membrane — lipid metabolism, APP processing and AB neurotoxicity in AD
(Adapted with permission from Nature Publishing Groups).

metabolism, together with altered ceramide production,
may cause dysfunction of synapses and render neurons
vulnerable to apoptosis and excitotoxicity (34,161).

An increase in the size of the amyloid 3-peptide (Ap42
versus AP40) may be a key factor in the pathogenesis
of Alzheimer's disease. By altering the activities of
enzymes involved in the metabolism of cholesterol and
sphingomyelin, an increase in the Af42:AB40 ratio may
cause dysfunction and death of neurons (161).

AD Biomarkers

The ‘amyloid cascade theory’ is the prevailing hypothesis
on the cause of Alzheimer disease. It holds that an
imbalance between production and clearance of AP in
the brain is the initiating event in the disease. ultimately
leading to neuronal degeneration and dementia (36).
Substantial efforts have been made to translate the
understanding of pathogenic mechanisms into therapeutic
strategies. A major focus has been to inhibit production
and aggregation of Af} and to increase its clearance from
the brain—for example. by inhibiting Af}-generating
enzymes and by using AP} immunotherapy (33). A number
of promising drug candidates are now under development.
Such drugs with disease-modifying potential are likely to
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have the best efficacy in the early phase of the disease, when
the neuronal degeneration has not become too widespread.
This has initiated an intense search for Alzheimer disease
biomarkers.

The first clinical phase in Alzheimer disease, typically
characterized by isolated memory disturbances, is called
mild cognitive impairment (MCI) (162). Only around
40-60% of individuals with MCI have incipient Alzheimer
disease that will progress to Alzheimer disease with full-
blown dementia, whereas others will develop different
forms of dementia or have a benign form of MCI. As
there is no clinical method to determine which MCI cases
have incipient Alzheimer disease, there is a great need for
biomarkers to identify these cases.

Another potential use for biomarkers is in clinical trials.
At present, trials for new Alzheimer disease therapies often
involve people with MCI. But these studies are impeded by
the insufficiency of current criteria to identify MCI cases
with incipient true Alzheimer disease (163).

The accuracy of the clinical diagnosis at the primary
care level and in general hospitals is probably even
lower, especially in the early stages of the disease when
the symptoms are indistinct. In view of this, the need for
specific AD markers is great. According to a proposal of a
consensus group on molecular and biochemical markers of
AD (164), an ideal marker of AD should be able to detect
a fundamental feature of neuropathology and should be
validated against neuropathologically confirmed cases.
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Furthermore, its sensitivity for detection of AD as well as
its specificity for discrimination of AD from other dementia
disorders should exceed 80% . A marker for AD should also
be reliable, reproducible, noninvasive, simple to perform
in clinical routine and inexpensive (165).

B-amyloid 42 (AP42), Total Tau (T-tau)
and Phosphorylated Tau (P-tau)

Underlying neuropathological changes in AD are the
accumulation of senile plaques (SPs) and neurofibrillary
tangles (NFTs). SPs are made up mainly of f-amyloid,
especially the 42-amino-acidisoform. }-amyloid 42 (A42)
(166). The major constituent of NFTs is a cytoskeleton-
associated protein called tau, which is hyperphosphorylated
in NFTs (167). The golden standard of diagnosis is the
identification of typical neuropathological changes in the
brain of a patient who has suffered from clinical AD.

Among several, we have focused on three candidates
that have been suggested to fulfill the requirements for
biomarkers of AD: f-amyloid42 (Ap42) | total tau (T-tau)
and tau phosphorylated at various epitopes (P-tau). The
cerebrospinal fluid (CSF) levels of these proteins reflect
the metabolism of these proteins in the central nervous
system (165).

Ap42
The central protein in SPs is Af42. It is produced and
secreted from human cells as a result of normal cellular
processing of the larger transmembrane protein APP (168).
In this processing, APP is cleaved in several steps and Af}
is produced. In. AD, APP is first cleaved by an enzyme
called [>-secretase, which results in the release of a large
N-terminal fragment called [-secretase-cleaved soluble
APP. In a second step, APP is cleaved by the y-secretase
complex, which results in the release of free Af. In this
processing, various isoforms of Af. for example, Ap42,
are produced; all of which are secreted into the CSF.
Using four different ELISA methods that are specific
to AP42 (169-172), more than 30 studies have consistently
demonstrated a moderate to marked decrease in CSF
AP42 in AD. The principle for the ELISA that is most
commonly used to measure AP42 in CSF, INNOTEST™
B-AMYLOID(1—-42) (172. There are 13 studies. including
a total of about 600 AD cases and 450 controls, in which
sensitivity and specificity figures have been given or can be
calculated from graphs. These studies show that, for CSF
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AP42, the mean sensitivity for discrimination between
AD and normal aging is approximately 86%, while the
specificity is approximately 91% and the mean level of
decrease in AD patients compared with controls is about
50%

On the other hand, the specificity for discrimination
of AD from other disorders is moderate. Low levels of
AP42 in CSF have, for example, been found in Lewy body
dementia (173,174). a disorder also characterized by the
presence of SPs. Low levels have also been found in a
small percentage of patients with frontotemporal dementia
and vascular dementia (175,176) and also in Creutzfeldt—
Jakob's disease (177.178) and amyotrophic lateral sclerosis
(179). These studies question the putative relation between
low CSFAP42 levels and the accumulation of SPs. There
are several possible causes of low CSF-AP42 levels, for
example, axonal degeneration (179,180) and entrapment
in narrow interstitial and subarachnoid drainage pathways
(179).

T-tau
Tau is a microtubule-associated protein which is located
mainly in neuronal axons. By binding to microtubules, it
promotes the stability and function of these. In the normal
human brain. six different isoforms of tau are found. all
of which have numerous phosphorylation sites (182).
As tau 1s a major constituent of NFTs, CSF T-tau has
been suggested as a marker for AD. Using monoclonal
antibodies that detect all isoforms of tau independent of
degree of phosphorylation, enzyme-linked immunosorbent
assays (ELISAs) have been developed that measure the
T-tau levels in CSF (183-185). Using these ELISAs, more
than 50 studies have consistently demonstrated a moderate
to marked increase in CSF T-tau as well as high sensitivity
and specificity of CSF-tau in AD patients when compared
with controls. So far, CSF from about 2400 AD patients and
1250 controls has been investigated in this way. The mean
degree of increase is about 300% in AD compared with
controls. The high sensitivity and specificity make CSF
T-tau a good candidate for the designation biochemical
marker for AD, or AD biomarker. However, high levels of
T-tau in the CSF have also been found in a proportion of
cases with other dementia disorders. such as frontotemporal
dementia (186.187) and Lewy body dementia (173), but
in several other disorders, for example, alcohol dementia,
Parkinson’s disease and depression, the CSF levels of
T-tau seem to be normal and only occasionally increased
(184.187-189).

It has been suggested that the CSF T-tau levels reflect
the degree of neuronal (especially axonal) degeneration
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and damage (184). Some evidence for this has been found,
for instance, a transient increase in CSF T-tau after acute
stroke, with a positive correlation between CSF T-tau and
infarct size as measured by computerized tomography [21],
a very marked increase in CSF T-tau in Creutzfeldt—Jakob’s
disease (191), and a correlation between premortem CSF
T-tau levels and the postmortem density of neurofibrillary
tangles in the brain (192). Indirect evidence is that, in
AD and controls, there is a positive correlation between
the CSF levels of T-tau, GAP-43 and amyloid precursor
protein (APP). all proteins located in the axon of neurons
(193).

P-Tau

Tau is normally in a phosphorylated state. Over 70
phosphorylation sites are found on the human tau molecule
and, in AD., tau is usually in a hyperphosphorylated state.
In AD. this hyperphosphorylation involving certain
epitopes on the tau molecule has the consequence that
tau loses its ability to promote microtubule assembly and
stability, which in turn leads to cytoskeleton instability and
diminished transport ability (194.,195). A consequence of
this is aggregation of tau with subsequent formation of
NFTs (182). Several ELISAs have been developed that
use monoclonal antibodies directed toward sites that are
phosphorylated in AD. The principle for one of these
ELISAs, INNOTEST™ PHOSPHO-TAU, g,
measures tau phosphorylated at threonine 181 (P-Tau,;,)
(197). Other ELISAs identify tau phosphorylated at the
epitopes threonine 181 and 231 (P-tau,, , .5,) (184),
threonine 231 and serine 235 (P-tau,y, , ;). serine 199
(P-tau,;) (184), threonine 231 (P-tau,,,) (199) and serine
396 and 404 (P-tau, , ,.) (200). All these assays have
shown increased CSF levels of P-tau in AD patients
compared with controls. The sensitivity of CSF P-tau for
discrimination between AD and normal aging is about
the same or slightly lower as that of CSF T-tau, that is,
about 75%. Interestingly, the specificity of CSF P-tau for
discrimination of AD from other dementias seems to be
higher than those of CSF T-tau and CSF Afp42. Normal
CSF levels of P-tau have been found in vascular dementia.

which

frontotemporal dementia (201) and Lewy body dementia
(202). which suggests that the above ELISAs may help to
discriminate between AD and these dementias. In addition,
while there is a marked increase in CSF T-tau after acute
stroke, the CSF P-tau does not change (203). This suggests
that the origin of increased CSF P-tau levels is more closely
related to AD pathology, for instance, the formation of
NFTs.
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Combination of CSF Markers

The rationale for using the CSF levels of T-tau. Ah42 and
P-tau in combination to detect AD is very clear. Because the
concentrations of any one of these substances is believed to
reflect central pathogenetic processes in the disorder. that
is, according to the leading hypothesis on the development
of AD. the amyloid cascade hypothesis, the combination
might result in increased sensitivity and specificity. In
fact. some large studies have shown that both sensitivity
and specificity increase when, for instance, CSF T-tau
and CSF Af42 are used in combination instead of being
used alone (173,175.204 205). Moreover, in a community-
based setting. the sensitivity for AD was more than 90%.
when combinations of the above CSF markers for AD were
used in routine clinical chemistry analyses. The sensitivity
and specificity figures were based on the wvalues for all
consecutive patients admitted for investigation of cognitive
disturbances during 1 year (173).

High CSF levels of T-tau and low CSF levels of Ah42
in the early stages of AD have been found in several studies
(175.204.206-209). For more severely demented AD cases.
the sensitivity figures are 80-90%, suggesting that the two
CSF markers are workable in the early stages of the disease
process. Several studies have also found high CSF levels
of T-tau and low CSF levels of AP42 in patients with mild
cognitive impairment (MCI) who later developed AD
(206.210,211). Increased CSF levels of T-tau were also
found to discriminate, with high sensitivity and specificity.
MCI patients whose disturbances later progressed to AD
from the others (210). Other studies have also found
increased CSF levels of P-tau in a high proportion of MCI
cases (210,211). These findings suggest that all three CSF
markers may be of use in the clinical identification of AD
in the very early phases of the disease and thus facilitate
early intervention (165).

To simultaneously study several biomarkers for
Alzheimer disease (AD), the xMAPTM technology has
been develop and evaluate a multiparametric bead-based
assay for quantification of [-amyloid,_,, [Af,_]. total
tau (T-TAU). and hyperphosphorylated tau [P-TAU ;4]
in cerebrospinal fluid (CSF). The new multiparametric
method may be able to replace the corresponding ELISA
methods (212).
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Visinin-like Protein 1 (VLP-1)

Another class of biomarkers that may have utility in the
diagnosis of AD are those that reflect neuronal death
rather than specific markers of disease pathogenesis.
Such markers may provide information about disease
progression related to functional outcome and may have
utility in future clinical trials testing therapeutic efficacy.
Several reports have demonstrated the lack of correlation
between amyloid plaque load and degree of dementia.
suggesting that the former may not directly relate to the
latter (85,213). Therefore, a neuronal death biomarker
might have greater correlation with dementia severity than
the well-studied pathological biomarkers (214).

Quantified the levels of a brain injury marker, visinin-
like protein 1 (VLP-1, also abbreviated as VILIP-1 or
VSNL-1).1n CSF of AD patients and age-matched controls.
VLP-1 belongs to the family of neuronal calcium sensor
proteins involved in calcium-dependent signal transduction
mechanisms in neurons. VLP-1 increases neuronal cyclic
adenosine monophosphate levels by inducing protein
kinase A. VLP-1 is expressed in neurons (215) and its
immunoreactivity is decreased in brains of AD patients
compared to controls (216). Remarkably, VLP-1 expression
is associated with neurofibrillary tangles in AD brains
(217). The investigation of the concentration of VLP-1
in CSF reported by Lee et al. was based on findings they
reported (218). VLP-1 appeared to be a protein that was
relatively brain specific; its concentration was increased
in plasma of stroke patients and in CSF in a rat model
for stroke, suggesting that VLP-1 is a marker for (rapid)
neuronal cell injury. In the present study, CSF VLP-1
concentrations were 50% higher in AD patients than in the
control population. An interesting aspect of the studies of
Lee and colleagues is that their original approach to find
novel markers of brain injury, i.e., mRNA profiling and
selection for products that were highly enriched in brain
tissue (218), resulted in the identification of VLP-1, which
was not picked up by comparable fishing expeditions using
a proteomics approach with human CSF from AD patients
(219).

Interestingly, VLP-1 concentrations in AD patients
with an apolipoprotein E (APOE) e4/e4 genotype were
approximately double those in €3/e3 carriers. Although
the current study includes a relatively small patient series
and the results await confirmation in larger cohorts and
fro m independent studies, this association of VLP-1 with
the APOE genotype seems to be remarkably different
from the association of the APOE genotype with T-tau
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concentrations (214).

Another remarkable finding by Lee er al. is the
correlation between Mini Mental Status Examination
(MMSE) scores as a marker for disease severity and CSF
VLP-1 concentrations. Many reported studies have found
no correlation of CSF Af342 and T-tau with MMSE score
[summarized in (220) and confirmed in the small cohort
described by Lee etal. (214). VLP-1is negatively correlated
to MMSE scores, suggesting VLP-1 may also have a role
as a biomarker of disease severity, and role in monitoring
disease activity (loss of neurons and cognition per period
of time) can also be envisioned. The findings of MMSE
correlation with VLP-1, however, should be confirmed in
wider ranges of MMSE values and larger groups.

Finally. as Lee et al. point out in their report. the real
clinical challenge is not the differentiation of patients
with AD from controls but of patients with AD from
patients with other types of dementia, including vascular
dementia. dementia with Lewy bodies. or frontotemporal
lobe degeneration, and also in patients whose dementia
is attributable to treatable disorders such as vitamin
deficiencies, depression. alcohol abuse, and normal-
pressure hydrocephalus (221).

Miscellaneous Brain-Spesific Proteins

A varnety of other brain-injury biomarkers have been
examined in the CSF of patients with dementia, including
neuron-specific enolase (223.224), S100f3 protein (225),
and glial fibrillary acidic protein (GFAP) (226), all with
variable diagnostic specificity and sensitivity. More recently,
proteomic profiling has resulted in the identification of
several candidate biomarkers (227), including heart-fatty
acid binding protein (228,229), Park 7, and nucleoside
diphosphate kinase A (230). The effectiveness of a fluid
biomarker is dependent on a multitude of factors, including
organ specificity, accumulation in accessible body fluids,
stability, clearance, and detectability. Direct comparisons
between biomarker candidates will be important to identify
such an ideal biomarker.

APOE genotype is the strongest known genetic risk
factor for the development of late-onset AD, with the &4
allele incurring greatest risk (25.142.231). The molecular
mechanism for this risk is not known; however, it is
believed that ApoE protein may play a role in A} transport/
clearance (232). and that the genotype may also impart
mcreased vulnerability to a variety of central nervous
system injuries (233).
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With the increasing clinician awareness that CSF
biomarkers have additional value in the diagnostic work-
up of dementia patients and that CSF analysis appears
likely to gain a position in the diagnostic (research) criteria
for AD, this study will motivate other researchers in their
quest to find specific biomarkers for dementia syndromes
(221).

Plasma Signaling Proteins

Because the brain controls many body functions via the
release of signaling proteins, and because central and
peripheral immune and inflammatory mechanisms are
increasingly implicated in Alzheimer’s (7) and related
diseases4, Ray et al hypothesized that the pathological
processes leading to Alzheimer’s would cause characteristic
changes in the concentrations of signaling proteins in the
blood, generating a detectable disease-specific molecular
phenotype (235).

The computational gene network prediction tool
Ingenuity Pathway Analysis (Ingenuity Systems) identified
two independent regulatory networks connecting the
18 signaling proteins. One network centered on tumor
necrosis factor (TNF)-a and monocyte-colony stimulating
factor (M-CSF). whereas the other centered on epidermal
erowth factor (EGF). Consistent with these findings, gene
ontology (Kyoto Encyclopedia of Genes and Genomes;
http://www.genome jp/kegg/) and BioCarta (http://www.
biocarta. com/) pathway analyses indicated involvement
of the 18 markers in immune response, hematopoiesis and
apoptosis (235).

A decrease i the abundance of factors linked to
hematopoiesis would be particularly noteworthy in light of
recent data suggesting that hematopoietic cells can enter
the brain in Alzheimer’s disease or in Alzheimer’s mouse
models at increased frequencies and modulate the disease
(7,236, 237). Dysfunction of apoptotic pathways has also
been linked to Alzheimer’s disease (238).

The observed dysregulation of the signaling pathways
represented by the 18 signaling proteins in blood plasma
may point to changes in the periphery. the central nervous
system or both that are relatively specific to Alzheimer’s
disease and occur early in the disease process.

Studied by Ray et al found 18 signaling proteins in
blood plasma that can be used to classify blinded samples
from Alzheimer’s and control subjects with close to 90%
accuracy and to identify patients who had mild cognitive
impairment that progressed to Alzheimer’s disease
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2-6 years later. Biological analysis of the 18 proteins
points to systemic dysregulation of hematopoiesis,
immune responses, apoptosis and neuronal support in

presymptomatic Alzheimer’s disease (235).

Conclusions

For the time being, a presumptive diagnosis of Alzheimer’s
can be made clinically using various cognition tests,
neurological exams, and patient history. A definitive
diagnosis is possible only through post — mortem brain
analysis. Unfortunately. by the time symptoms appear and a
clinical diagnosis is made, the disease has been simmering
for decades and intractable neurological damage occurred
(239).

Development of disease-specific CSE. serum and
urine biomarkers will undoubtedly add to the process of
differential diagnosis early in the course of the disease
(220).
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