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B
ACKGROUND: Regardless of the precise 

underlying molecular mechanisms, the fundamental 

deining manifestation of aging is an overall decline 
in the functional capacity of various organs to maintain 

baseline tissue homeostasis and to respond adequately to 

physiological needs under stress. There is an increasingly 

urgent need for a more complete understanding of the 

molecular pathways and biological processes underlying 

aging and age-related disorders.

CONTENT: Mitochondria constitute the most prominent 

source of adenosine triphosphate (ATP) and are implicated 

in multiple anabolic and catabolic circuitries. In addition, 

mitochondria coordinate cell-wide stress responses and 

control non-apoptotic cell death routines. The involvement 

of mitochondria in both vital and lethal processes is crucial 

for both embryonic and postembryonic development, as 

well as for the maintenance of adult tissue homeostasis. 

Age-associated telomere damage, diminution of telomere 

‘capping’ function and associated p53 activation have 

emerged as prime instigators of a functional decline of 

tissue stem cells and of mitochondrial dysfunction that 

Abstract
adversely affect renewal and bioenergetic support in diverse 

tissues. Constructing a model of how telomeres, stem cells 

and mitochondria interact with key molecules governing 

genome integrity, ‘stemness’ and metabolism provides a 

framework for how diverse factors contribute to aging and 

age-related disorders.

SUMMARY: Cellular senescence deined as an irreversible 
proliferation arrest promotes age-related decline in 

mammalian tissue homeostasis. The aging of tissue-speciic 
stem cell and progenitor cell compartments is believed to 

be central to the decline of tissue and organ integrity and 

function in the elderly. Taken into consideration that the 

overwhelming majority of intracellular reactive oxygen 

species (ROS) are of mitochondrial origin, it is reasonable 

to posit that the elevated ROS production might be caused 

by alteration in mitochondrial function during senescence. It 

is likely that mitochondria and stem cells will remain at the 

forefront of aging research also for the next decade.
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Introduction

Aging can be deined as ‘a progressive, generalized 
impairment of function, resulting in an increased 

vulnerability to environmental challenge and a growing 

risk of disease and death’.(1) It is generally assumed 

that accumulated damage to a variety of cellular systems 

is the underlying cause of aging.(2) There is growing 

appreciation for a more subtle role for oxidative stress in 

aging. This perspective recognizes the important role of 

reactive oxygen and nitrogen species in regulating adaptive 

responses to physiological stress (i.e. redox signaling).(3) 

One characteristic of this redox signaling is that it typically 

involves low levels of relatively short-lived oxidative stress 

under normal physiological conditions. Another important 

feature of the redox stress hypothesis in the context of aging 
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is that the signaling is dynamic and reversible. Mitochondria 

are likely targets for regulation by redox signaling, because 

they are a major source of reactive oxygen species (ROS) 

in most cells. This is supported by reports demonstrating 

that mitochondrial enzyme activities, metabolic luxes, and 
morphology are sensitive to the redox environment ex vivo 

and in cells.(4)

 To preserve genome integrity, cells have developed 

a ine-tuned machinery to counteract ROS by keeping 
them in equilibrium with reducing equivalents.(5,6) The 

maintenance of redox balance is thus critical for cells both in 

steady states and during adaptations to different conditions. 

Now, a new study by Ji, et al., demonstrates that supporting 

redox homeostasis is important also during the induction of 

pluripotency.(7)

 A diminished capacity to maintain tissue homeostasis 

is a central physiological characteristic of aging. As stem 

cells regulate tissue homeostasis, depletion of stem cell 

reserves and/or diminished stem cell function have been 
postulated to contribute to aging.(9) It has further been 

suggested that accumulated DNA damage could be a 

principal mechanism underlying age-dependent stem cell 

decline.(10,11) Multiple lines of evidence indicate that 

mitochondrial ROS also inluence homeostatic signaling 
pathways to control cell proliferation and differentiation 

and to contribute to adaptive stress signaling pathways, 

such as hypoxia.(12) Observations from premature aging 

mouse models suggest that hematopoietic progenitors are 

especially sensitive to ROS and/or redox state changes 
that promote proliferation and prevent quiescence.(13,14) 

These observations imply that ROS/redox signaling affects 
somatic stem cell function and causes progeroid symptoms 

(15) and that mitochondrial dysfunction in somatic stem 

cells may contribute to aging-related degeneration.(16)

 Increasing evidence points to telomeres and p53-

mediated DNA damage signaling being core components 

that drive the senescent or apoptotic depletion of tissue 

stem-cell reserves and age-related tissue degeneration.

(17) A speculative model that posits a connection linking 

telomere damage and p53 activation with stem-cell and 

mitochondrial dysfunction. This model offers a unifying 

explanation of how telomeres inluence the health of the 
aging organism across diverse tissues with wide-ranging 

proliferative proiles.(17)

The complexity of the aging process does not allow 

for a single all-encompassing deinition, yet decades of 

Stem Cell Hypothesis of Aging

study using diverse systems, methodologies, and model 

organisms have begun to build a consensus regarding the 

central physiological characteristics of aging. Indeed, such 

studies have shown that the process of aging is invariably 

accompanied by a diminished capacity to adequately 

maintain tissue homeostasis or to repair tissues after 

injury. When homeostatic control diminishes to the point 

at which tissue/organ integrity and function are no longer 
suficiently maintained, physiologic decline ensues, and 
aging is manifested. Consistent with this, many of the 

pathophysiological conditions aflicting the elderly, such as 
anemia, sarcopenia (loss of muscle mass), and osteoporosis, 

suggest an imbalance between cell loss and renewal. The fact 

that homeostatic maintenance and regenerative potential of 

tissues wane with age has implicated stem cell decline as a 

central player in the aging process.(18)

 Most tissues and organs contain minor populations 

of primitive stem cells and progenitor cells. These cells are 

integral irst in the developing fetus for the generation of 
tissues and organs and later in the adult for ongoing tissue 

maintenance and regeneration after injury. In general, they 

have slow turnover and reside in specialized niches, protected 

from the environment, so that only a few are activated at a 

time. Thus, stem cells are a defense against aging, replacing 

cells lost through attrition. If the rejuvenating effect of 

stem cells were perfect, senescing cells would be replaced 

indeinitely; but even in highly regenerative tissues such as 
the skin, the gut, and the hematopoietic system, age – related 

decline in function is well established.(19) Still unclear are 

the effects of aging on the stem cells themselves, which 

could contribute to inferior tissue repair.(20)

 Recent evidence supports the model that stem cells 

in several tissues are largely retained in a quiescent state 

but can be coaxed back into the cell cycle in response to 

extracellular cues, even after prolonged periods of dormancy. 

Once stimulated to divide, stem cells yield undifferentiated 

progeny, which in turn produce differentiated effector 

cells through subsequent rounds of proliferation. This 

‘hierarchical’ differentiation scheme makes sense from 

the perspective of organismal longevity — it permits 
the production of large numbers of differentiated cells 

from a single stem cell by combining subsequent steps in 

differentiation with proliferation.(21,22) Therefore, this 

approach balances the high rates of homeostatic proliferation 

that are required in tissues like the bone marrow and 

intestine with the long-term need to protect stem cells from 

mutagenic insult and carcinogenesis.(23)

 Additionally, as stem cells appear to be less 

metabolically active in their quiescent state, they may 
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be subjected to lower levels of DNA-damage-inducing 

metabolic side products such as ROS.(24) It is therefore 

reasonable to surmise that perhaps some characteristics of 

aging — once thought to be degenerative — might relect 
a decline in the regenerative capacity of resident stem 

cells across many different tissues. Self-renewal comes 

with some danger for the organism; in particular, a risk of 

malignant transformation.(25-27)

This relationship between self-renewing cells and cancer 

raises the possibility that while carrying out a beneicial, 
anti-cancer function these tumor-suppressor mechanisms 

may inadvertently contribute to aging by causing stem-

cell arrest or attrition.(23) In summary, we believe the data 

suggest that we grow old partly because our stem cells grow 

old as a result of mechanisms that suppress the development 

of cancer over a lifetime. In this regard, our self-renewing 

stem cells appear to grow old because of heritable intrinsic 

events, such as DNA damage, but also due to cell-extrinsic 

events such as alterations in their supporting niches. Anti-

cancer mechanisms such as senescence and apoptosis, which 

rely on telomere shortening and/or p5γ and p16INK4a 
activation, appear to promote aging just as their failure is 

associated with cancer.(23)

The central player in bioenergetics is the mitochondrion. 

Mitochondria produce about 90% of cellular energy, 

regulate cellular redox status, produce ROS, maintain 

Ca2+ homeostasis, synthesize and degrade high-energy 

biochemical intermediates, and regulate cell death through 

activation of the mitochondrial permeability transition pore 

(mtPTP). The mitochondrial genome consists of thousands 

of copies of the maternally inherited mitochondrial 

DNA (mtDNA) plus between 1,000 and 2,000 nuclear 

DNA (nDNA) genes. mtDNA codes for 13 oxidative 

phosphorylation (OXPHOS) polypeptides, plus the ββ 
transfer RNA (tRNA) and the 12S and 16S ribosomal RNAs 

(rRNAs) necessary for the bacteria-like mitochondrial 

protein synthesis. mtDNA polypeptides encompass seven 

of the 45 polypeptides of OXPHOS complex I (ND1, 
ND2, ND3, ND4, ND4L, ND5, and ND6), one of the 11 

polypeptides of complex III (cytochrome b), three of the 13 

polypeptides of complex IV (COI, COII, and COIII), and 

two of the approximated 17 poly-peptides of complex V 

(ATPase6 and ATPase8). Complexes I, III, and IV constitute 

the electron transport chain (ETC), which oxidizes the 

reducing equivalents (hydrogen-derived electrons) from 

food with the oxygen we breathe.(29)

 Alterations in mitochondrial structure and function 

can impair OXPHOS, which in turn can reduce energy 
production, alter cellular redox state, increase ROS 

production, deregulate Ca2+ homeostasis, and ultimately 

activate the mtPTP, leading to apoptosis. These and other 

consequences of OXPHOS perturbation can destabilize 
mtDNA. This results in progressive accumulation of 

somatic mtDNA mutations and decline of mitochondrial 

function, which accounts for aging and the delayed-onset 

and progressive course of degenerative diseases. As energy 

output declines, the most energetic tissues are preferentially 

affected, resulting in degenerative diseases of the central 

nervous system, heart, muscle, and kidney. Aberrant 

mitochondrial caloric metabolism also leads to metabolic 

deregulation, endocrine dysfunction, and symptoms such as 

diabetes, obesity, and cardiovascular disease.(29)

 In essence, mitochondria occupy a key position in 

the management of several cellular functions, including 

physiological metabolism, stress responses, and cell death. 

Intriguingly, several mitochondrial components that operate 

as cell death regulators also exert cell death–unrelated 

functions.(γ1,γβ) This might relect the evolutionary origin 
of mitochondria (which, according to the endosymbiotic 

hypothesis, have evolved from proteobacteria engulfed 

by protoeukaroytic cells) (33) or their need to centralize a 

Figure 1. A stem cell perspective on cancer and aging.(28) 

(Adapted with permission from Nature Publishing Group).

Mitochondria Control Cellular Life, 

Stress and Death
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wide array of molecular functions within a relatively small 

number of proteins (32).

 In adverse conditions, cells activate a wide array of 

mechanisms to re-establish homeostasis and to repair stress-

induced molecular damage.(34) Mitochondria are involved 

in the response of cells to a wide number of perturbations, 

including oxidative stress and pathogen invasion. In addition, 

mitochondria play a critical role during autophagy in that 

they both can be the substrate of autophagic degradation 

(mitophagy) (γ5) or can be speciically spared by the 
autophagic machinery to ensure energy production during 

stress responses (36,37). Thus, ROS constitute a normal 

side product of respiration, they are required for several 

intracellular signaling pathways (38), and are normally 

handled by an entire battery of mitochondrial, cytosolic, and 

peroxisomal antioxidant systems, including the following: 

superoxide dismutases, which catalyze the dismutation 

of superoxide anions (O
2

-) into O2 and hydrogen peroxide 

(H
2
O

2
); catalases, which catalyze the decomposition of H

2
O

2
 

into H
2
O and O

2
; peroxiredoxins, which reduce H

2
O

2
 as well 

as other oxidized species such as organic hydroperoxides 

and peroxynitrites; thioredoxin, acting as an eficient 
reducing agent, thanks to a highly conserved CXXC motif 
that can be restored by thioredoxin reductase; glutathione, 

a tripeptide with intrinsic antioxidant properties that can be 

recycled on reduction by glutathione reductase; glutathione 

peroxidase, an enzyme that uses the reducing equivalents 

of glutathione for converting H
2
O

2
 into H

2
O and organic 

hydroperoxides into the corresponding alcohols; and, 

simply, thiol containing proteins, which are endowed with 

the capacity to buffer ROS by forming oxidized disulide 
bonds.(39)

 As a consequence of oxidative stress, be it endogenous 

(i.e., at tributable to self-generated ROS) or exogenous 

(i.e., attributable to extracellular ROS), mitochondria 

undergo several functional adaptations. These adaptations 

maximize the ROS-buffering capacity of mitochondria 

(and of other cellular compartments), thus allowing the 

re-establishment of homeostasis in response to mild 

oxidative stress. However, if oxidative stress persists and 

the associated molecular damage (i.e., lipid peroxidation, 

protein misfolding, mtDNA mutations) is beyond recovery, 

then mitochondria can translate such an adaptive response 

into the activation of cell death.(40) 

 Mitochondria have been shown to control (at least) 

3 distinct cell death modalities: (A) extrinsic apoptosis; 

(B) intrinsic apoptosis; and (C) regulated necrosis. 

Extrinsic apoptosis is ignited by either the ligand-induced 

oligomerization of transmembrane proteins of the death 

receptor superfamily (e.g., FAS/CD95, tumor necrosis 
factor receptor 1 (TNFR1)) (41) or when the extracellular 

concentrations of speciic trophic factors (e.g., netrin-1) fall 

below a certain threshold, leading to the transduction of 

lethal signals by the so-called dependence receptors (e.g., 

unc-5 homolog A (C. elegans) (UNC5A), deleted in colon 

cancer (DCC)).(42) On oligomerization, the cytoplasmic 

tails of death receptors drive the assembly of a multiprotein 

complex known as death-inducing signaling complex, 

eventually leading to the activation of the proapoptotic 

caspase-8-caspase-3 cascade.(43)

 Intrinsic apoptosis involves a central step of 

regulation that is mediated by mitochondria. Thus, in 

response to multiple distinct intracellular stress conditions, 

mitochondrial membranes can become permeabilized 

because of the pore-forming activity of proapoptotic 

members of the B-cell lymphoma-2 (Bcl-2) protein 

family, such as Bcl-β-associated X protein (Bax) and 
Bcl-2 homologous antagonist killer (Bak). Alternatively, 

mitochondria can lose their structural integrity after the 

so-called mitochondrial permeability transition (MPT), 

a phenomenon that is initiated at the mitochondrial inner 

membrane. In both cases, permeabilized mitochondria 

allow for the release of potentially toxic proteins into the 

cytoplasm, including cytochrome c (Cyt c). Together with 

deoxyadenosine triphosphate (dATP) and the adaptor 

protein apoptotic peptidase-associated factor 1 (APAF-

1), cytoplasmic Cyt c drives the assembly of the so-called 

apoptosome, a supramolecular complex for the activation of 

pro-caspase-9. Eventually, active caspase-9 proteolytically 

processes pro-caspase-3, resulting in the execution of 

apoptotic cell death.

 One particular instance of regulated necrosis, also 

known as necroptosis, is triggered by TNFR1 ligation when 

caspases (in particular caspase-8) are inactive (for instance 

because of the presence of the caspase inhibitor Z-VAD-

fmk). In these conditions, receptor interacting protein kinase 

(RIPK)1 and RIPK3 engage in physical and functional 

interactions with mixed lineage kinase domain-like 

(MLKL) to form a multiprotein complex called necrosome.

(44-49) The necrosome stimulates regulated necrosis at 

the mitochondrial level by inhibiting adenine nucleotide 

transferase (ANT), by exacerbating glutaminolysis (and, 

hence, inducing the overgeneration of ROS), and by 

promoting mitochondrial fragmentation.(40) Thus, with a 

relatively small number of proteins, mitochondria operate 

as highly specialized cellular sentinels that continuously 

monitor the conditions of the cell to inely adapt its metabolic 
activity, to coordinate adaptive responses to stress, and to 

decide on its inal and inexorable fate.
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Cell function relies on the constant supply of ATP and 

it is crucial that mitochondrial ATP production adapts 

to environmental and cellular challenges to maintain 

cellular function. Key molecules in sensing cellular stress 

situations seem to be the peroxisome proliferator-activated 

receptor-c coactivator (PGC)-family of transcriptional 
co-activators, which are key regulators of mitochondrial 

biogenesis. Recent work has identiied several stress-
regulated pathways that affect mitochondrial biogenesis 

through modulation of the activity of PGC-1α.(50) 
Mitochondrial biogenesis can be deined as the growth and 
division of pre-existing mitochondria. According to the 

well-accepted endosymbiotic theory, mitochondria are the 

direct descendants of an α-proteobacteria endosymbiont 
that became established in a host cell. Due to their ancient 

bacterial origin, mitochondria have their own genome and 

a capacity for autoreplication. Mitochondrial proteins are 

encoded by the nuclear and the mitochondrial genomes.(51)

 Mitochondrial biogenesis is very complex and 

requires numerous processes: besides synthesis of mtDNA 

encoded protein, biogenesis of new organellar structures 

includes synthesis and import of nuclear encoded proteins, 

assembly of the dual genetic origin derived proteins and 

mtDNA replication. Mitochondrial biogenesis relies on 

the concerted and synchronized action of these processes.

(52) Correct mitochondrial biogenesis relies on the 

spatiotemporally coordinated synthesis and import of ~1000 

proteins encoded by the nuclear genome, of which some are 

assembled with proteins encoded by mtDNA within newly 

synthesized phospholipid membranes of the inner and outer 

mitochondrial membranes. In addition, mtDNA replication 

and mitochondrial fusion and ission mechanisms must 
also be coordinated.(51) Mitochondrial biogenesis is 

triggered by environmental stresses such as exercise, cold 

exposure, caloric restriction (CR) and oxidative stress, cell 

division and renewal, and differentiation. The biogenesis of 

mitochondria is accompanied by variations in mitochondrial 

size, number, and mass.

 Mitochondrial biogenesis thus involves an intricate, 

complicated network of transcription factors nuclear 

respiratory factors (NRF)/peroxisome proliferator-activated 
receptors (PPAR)/estrogen-related receptors (ERR) that 
activate target genes encoding enzymes of fatty acid 

oxidation (FAO), OXPHOS, and anti-oxidant defence. 
PGC-1α, by co-activating, and controlling the expression 
of this network, directly links external physiological stimuli 

to the regulation of mitochondrial biogenesis and function. 

Additionally, mitochondrial biogenesis involves fusion/
ission and requires protein import and processing and 
cardiolipin biosynthesis.(53,54)

 Mitochondria in the cells of most tissues are tubular, 

and dynamic changes in morphology are driven by ission, 
fusion, and translocation.(55) The ability to undergo ission/

Figure 2. Bioenergetic paradigm for 

metabolic and degenerative diseases, 

cancer, and aging.(30) (Adapted with 

permission from American Society for 

Clinical Investigation).

Mitochondrial Biogenesis and Mitophagy
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fusion enables mitochondria to divide and helps ensure 

proper organization of the mitochondrial network during 

biogenesis. The processes of ission/fusion are controlled by 
GTPases, most of which were identiied in genetic screens 
in yeast.(56,57) Mitochondrial ission is driven by dynamin-
related proteins (DRP)1 and optic atrophy (OPA)1, while 

mitochondrial fusion is controlled by mitofusins (Mfn)-

1 and -2. Mfn are highly expressed in heart and skeletal 

muscle, and their expression is induced during myogenesis 

and physical exercise.(58,59) In addition to the control 

of the mitochondrial network, Mfn2 also stimulates the 

mitochondrial oxidation of substrates, cell respiration, 

and mitochondrial membrane potential, suggesting that 

this protein may play an important role in mitochondrial 

metabolism, and as a consequence, in energy balance.(58)

 Autophagy is a tightly regulated catabolic process 

whereby cells degrade their constituents to dispose of 

unwanted cytoplasmic elements and recycle nutrients 

for cellular remodeling.(60) The mitochondrion is an 

important actor in the life of a eukaryotic cell, but, like 

all good actors, a mitochondrion needs to exit the stage 

at the right time. Mitophagy removes mitochondria once 

they have played their part.(61) Thus, like macroscopic 

energy sources and power plants, these microscopic power 

supplies are essential but prone to release hazardous 

materials, particularly when they have been compromised 

by damage or age. Accordingly, ensuring proper elimination 

of dysfunctional mitochondria is imperative to cellular 

survival, and mitochondrial damage has been implicated 

in aging, diabetes, and neurodegenerative diseases.(62) 

To prevent cellular damage by preserving a population of 

healthy mitochondria, several quality control mechanisms 

have evolved.(61)

 Several proteins are now identiied that are critical in 
directing autophagosomes to the mitochondria, including 

autophagy-related gene (ATG)γβ, Nix, p6β, PINK1, 
and Parkin. Ubiquitination of the mitochondrion, and/
or the interaction of a mitochondrial receptor with the 

Figure 3. Conceptual illustration of the mitochondrial life cycle and the contribution of mitochondrial dynamics and mitophagy to 

quality control.(29) (Adapted with permission from American Heart Association).
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in endocrine/paracrine regulatory mechanisms, including 
activation of the renin–angiotensin–aldosterone system, 

adrenergic signaling, and an age-related dysfunction 

of growth hormone/insulin-like growth factor (IGF)-
1 signaling, also have an important role in promoting 

mitochondrial oxidative stress in the aged cardiovascular 

system.(63)

 Neurodegenerative diseases are a large group of 

disabling disorders of the nervous system, characterized 

by the relative selective death of neuronal subtypes. In 

most cases, there is overwhelming evidence of impaired 

mitochondrial function as a causative factor in these 

diseases. More recently, evidence has emerged for impaired 

mitochondrial dynamics (shape, size, ission-fusion, 
distribution, movement etc.) in neurodegenerative diseases 

such as Parkinson’s disease (PD), Huntington’s disease 

(HD), amyotrophic lateral sclerosis (ALS), and Alzheimer’s 

disease (AD).(70)

 mtDNA that encodes 13 of the 92 polypeptides of the 

OXPHOS system; the remaining structural polypeptides 
and assembly factors are encoded by nDNA. Mutations in 

either mtDNA or nDNA, resulting in OXPHOS dysfunction, 
are particularly known to affect tissues with high energy 

demands such as the central nervous system, skeletal 

muscle, and heart. Mitochondria are thought to contribute 

to aging through the accumulation of mtDNA mutations and 

net production of ROS. mtDNA mutations, mitochondrial 

abnormalities, and mitochondrial respiratory chain-deicient 
cells are also present in age-related neurodegenerative 

diseases such as PD and AD.(71-77)

 PGC-1α is a transcriptional coactivator that is a 
central inducer of mitochondrial biogenesis in cells. 

Recent work highlighted that PGC-1α can also modulate 
the composition and functions of individual mitochondria. 

Therefore, it is emerging that PGC-1α is controlling 
global oxidative metabolism by performing two types of 

remodelling:  cellular remodelling through mitochondrial 

biogenesis and organelle remodelling through alteration 

in the intrinsic properties of mitochondria. The elevated 

oxidative metabolism associated with increased PGC-
1α activity could be accompanied by an increase in ROS 
that are primarily generated by mitochondria. However, 

increasing evidence suggests that this is not the case, as 

PGC-1α is also a powerful regulator of ROS removal by 
increasing the expression of numerous ROS-detoxifying 

enzymes. Therefore, PGC-1α, by controlling both the 
induction of mitochondrial metabolism and the removal of 

its ROS by-products, would elevate oxidative metabolism 

autophagosomal protein light chain (LC)3 appear to be 

important in targeting of the autophagosome, but in each 

case the details of this recruitment remain unclear.(61)

Mitochondria play important roles in a myriad of cellular 

processes including ATP production via OXPHOS, 
biosynthetic pathways, cellular redox homeostasis, ion 

homeostasis, oxygen sensing, signaling, and regulation 

of programmed cell death. Mitochondrial dysfunction is 

central to theories of aging, because age-related changes 

of mitochondria are likely to impair a host of cellular 

physiological functions in parallel and contribute to the 

development of all common age-related diseases.(63)

 Mitochondria are highly dynamic organelles, and 

dysregulation of mitochondrial turnover is likely one of 

the intrinsic causes of mitochondrial dysfunction, which 

contributes to dysregulation of cell metabolism, oxidative 

stress, and altered signal transduction. Mitochondrial ROS 

might attack various mitochondrial constituents, causing 

mtDNA mutations and oxidative damage to respiratory 

enzymes. A defect in mitochondrial respiratory enzymes 

would increase mitochondrial production of ROS, causing 

further mitochondrial damage and dysfunction, leading 

to further decline in cellular and organ function that can 

eventually progress to death.(39)

 The molecular mechanisms underlying age-

related increases in mitochondrial oxidative stress in the 

cardiovascular system are multifaceted and likely involve 

cell-autonomous effects, including a signiicant decline 
in reduced glutathione content (64), dysregulation of 

antioxidant defense mechanisms eg, peroxynitrite-mediated 

nitration and inhibition of manganese superoxide dismutase 

(MnSOD) (65), and a dysfunctional ETC (66).

 There is a signiicant age-related increase in 
nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase activity both in heart and vasculature (67), which is 

likely to exacerbate mitochondrial oxidative stress in aging. 

In addition to the aforementioned age-related mechanisms, 

several cardiovascular risk factors, including oxidatively 

modiied lipoproteins, cigarette smoke constituents (68), 
high methionine diet and hyperhomocysteinemia, and 

diabetes (69), either directly or indirectly may increase ROS 

production in mitochondria of vascular cells and cardiac 

myocytes. Recent studies suggest that age-related changes 

Mitochondrial Dysfunction and 

Age-related Diseases



22

The Indonesian Biomedical Journal, Vol.7, No.1, April 2015, p.15-30 Print ISSN: 2085-3297, Online ISSN: 2355-9179

and minimize the impact of ROS on cell physiology.(78)

 Several studies also support a protective role for PGC-
1α in PD. PD is characterised by the loss of dopaminergic 
neurons in the substantia nigra and the presence of 

inclusions, referred to as Lewy bodies, which contain 

a-synuclein and ubiquitin.(79) The expression of numerous 

PGC-1α target genes, such as those of the respiratory chain, 
is decreased in Parkinson’s disease patients.(80) In support 

of this observation, Ppargc1a-null mice are more sensitive 

to methyl phenyl tetrahydropyridine (MPTP), a drug used to 

model PD in experimental studies.(81) Furthermore, PGC-
1α protects against neuronal loss in cell culture models of 
PD.(82,83)

 PGC-1α has also been implicated in AD, ALS and 
Duchenne muscular dystrophy. Expression of PGC-1α is 
reduced in AD patients and in the transgenic 2576 mouse 

model of AD.(84-86) Importantly, ectopic expression of 

PGC-1α in cell models of AD ameliorates their phenotype.
(84,85) In ALS, it has been shown that PGC-1α improves 
the overall phenotype of various mouse models of ALS.

(86-88) Lastly, PGC-1α has been shown to regulate the 
expression of neuromuscular junction genes, such as 

utrophin and laminin, as well as decrease damage to muscle 

tissue in a mouse model of Duchenne muscular dystrophy.

(89) Overall, these data highlight a potential protective role 

for PGC-1α in different neurodegenerative conditions.
 Age-associated decrease in the respiratory chain 

capacity was reported in various tissues, such as skeletal 

muscle (90) and liver (91). Hypotheses were put forward 

that acquired mutations of mtDNA would increase with time 

and segregate in mitotic tissues to eventually cause decline 

of respiratory chain function leading to age-associated 

degenerative disease and ageing.(2,92)

Aging-associated decline is consistent across tissues, 

resulting in slower wound healing, reduced muscle mass 

and neurogenesis, hair loss, and changes in blood cell 

type distribution.(93) Tissue homeostasis and regeneration 

depends on resident progenitor cell function and availability, 

and is consistent with the observation that genetic depletion 

of tissue-speciic progenitors results in premature aging.
(17) Accumulation of genomic and mtDNA mutations 

place cellular functions at risk and are correlated with 

aging. Elevated mtDNA mutation rates decrease lifespan, 

impair stem cell self-renewal, and induce abnormal 

lineage differentiation during embryogenesis, which 

manifests as progeria and respiratory chain deiciency.
(15) Aging-associated signaling pathways can also induce 

mitochondrial dysfunction and increase generation of ROS 

that compromise stem cell proiciency, which can be blunted 
with the use of antioxidants.(17) The systemic environment 

also signiicantly impacts the function of resident stem cells, 
with muscle and liver cells rejuvenated to a more youthful 

state when exposed to a young environment, and young 

cells adopting an aged phenotype in response to an aged 

environment.(93,94)

 Metabolism supports fundamental processes 

throughout life, as cells require a continuous yet adaptable 

energy supply to meet the demands of their specialized 

functions. Metabolic lexibility fuels divergent stem cell 
fates, which include quiescence to minimize stress damage, 

proliferation and self-renewal to maintain progenitor pools, 

and lineage speciication for tissue regeneration. These 
vital processes are powered through the metabolism of 

energy substrates supplied by the environment, such as 

glucose, fatty acids, and amino acids.(95) Beyond providing 

energetic supply, metabolic circuits engage master genetic 

programs in control of cell behavior, with cellular identity 

and functional state relecting the speciic metabolic 
pathways being used.(95)

 Plasticity in energy metabolism allows stem cells to 

match the divergent demands of self-renewal and lineage 

speciication. Beyond a role in energetic support, new 
evidence implicates nutrient-responsive metabolites as 

mediators of crosstalk between metabolic lux, cellular 
signaling, and epigenetic regulation of cell fate. Stem cell 

metabolism also offers a potential target for controlling 

tissue homeostasis and regeneration in aging and disease.

(95)

 Embryonic stem cell (ESC)-based cardiac 

differentiation was used as a paradigm to ascertain the 

metabolic requirements for tissue speciication. Study by 
Chung ,et al., demonstrated that mitochondrial network 

maturation integrated with energy-consuming excitation-

contraction coupling is mandatory for securing functional 

progeny of a cardiac lineage. These indings contribute 
novel insight into the vital role of energetic circuits in 

genomic reprogramming during cardiac differentiation, 

establishing metabolic targets for directed cardiogenesis 

and regeneration.(96) Thus, the state of mitochondrial 

physiology is an important determinant of developmental 

competence inluencing the outcome of the differentiation 
process.(97)

Mitochondrial Dysfunction and 

Stem Cell Aging
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 Stimulation of mitochondria biogenesis can overcome 

the differentiation block in fast-dividing cells, while 

reducing mitochondrial content perturbs cardiomyocyte 

differentiation in slow-dividing cells.(98) Mitochondrial 

and metabolic infrastructure thus prime stem cells for 

differentiation. When induced to differentiate, ESC and 

mesenchymal stem cell (MSC) downregulate stemness 

genes and stimulate mtDNA replication in support of 

mitochondrial biogenesis and maturation of extensive 

and interconnected networks of elongated and cristae-rich 

mitochondria.(96,76,99-101) In parallel, upregulation of 

tricarboxylic acid (TCA) cycle enzymes and ETC subunits, 

and downregulation of glycolysis, increases mitochondrial 

capacity, enabling accelerated respiration and more eficient 

ATP production.(96,102) Transition from glycolysis to 

mitochondrial oxidative metabolism and maintenance of 

mitochondrial electron transport function is critical for 

differentiation.

 Nutrient-sensitive signaling pathways that regulate 

lifespan and energy metabolism, such as those mediated 

by AMP-activated protein kinase (AMPK), forkhead box 

O (FOXO), insulin/IGF-1, and Mammalian Target of 
Rapamycin (mTOR), impact stem cell function. (103,104) 

Stemness is maintained in response to signals of plenty 

(insulin signaling and abundant amino acids), while signal 

reduction during starvation induces differentiation.(105) 

Inhibition of mTOR with rapamycin extends lifespan 

of mice and restores self-renewal and hematopoiesis of 

Figure 4. Metabolic Pathways for 

Stemness Maintenance. Catabolic and 

anabolic pathways are interconnected to 

provide stem cells suficient energy for 
homeostasis while producing requisite 

macromolecules for daughter cell 

replication.(95) (Adapted with permission 

from Cell Press).
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aged hematopoietic stem cell (HSC).(106,107) Signaling 

pathways that regulate aging and stem cell function may 

collectively converge on energy metabolism, which 

functions as a rheostat to regulate self-renewal and 

differentiation.

 AMPK enhances situin (SIRT)1 activity by increasing 

cellular nicotinamide adenine dinucleotide (NAD)1 levels, 

resulting in the deacetylation and modulation of the activity 

of downstream SIRT1 targets that include the PGC-1α 
and the FOXO1 and FOXOγα transcription factors. The 
AMPK-induced SIRT1-mediated deacetylation of these 

targets explains many of the convergent biological effects 

of AMPK and SIRT1 on energy metabolism. AMPK is a 

critical regulator of mitochondrial biogenesis in response 

to energy deprivation. Although the mechanisms by which 

AMPK modulates mitochondrial gene expression are not 

entirely elucidated, they seem to require the PGC-1α, either 
by increasing its expression or direct phosphorylation. 

Because PGC-1α is also activated by SIRT1-mediated 
deacetylation, that AMPK alters PGC-1α activity by 
changing its acetylation status.(108-116)

 FOXOs are important in maintaining the long-term 
regenerative potential of the HSC compartment, and that 

analysis of the role of FOXOs in other adult stem cell and 
ESC compartments may yield insights into the physiology 

and diseases of the renewing organ systems of long-lived 

species, including humans.

 Senescence represents a stress response in which 

cells withdraw from the cell cycle and lose the capability 

to proliferate in response to growth factors or mitogens.

(117,118) Senescent cells show very distinctive changes 

in morphology, acquiring a typical lat and enlarged shape 
and increase expression of recognized biomarkers of 

senescence, including staining for ȕ-galactosidase at pH of 
6.0 (senescence-associated-ȕ-gal or SA-ȕ-gal), decreased 
replicative capacity, increased expression of p53, p21, p16.

 The constant regeneration of somatic tissues leads 

to accumulation of senescent cells, which limits tissue 

renewal, perturbs normal tissue homeostasis and ultimately 

elicits aging. The senescence pathway can be triggered by 

multiple mechanisms. Originally, it was associated with 

replication exhaustion at the end of the cellular lifespan, a 

process currently deined as replicative senescence.(119) 
p53 functions as a transcription factor involved in cell-cycle 

control, DNA repair, apoptosis and cellular stress responses. 

However, besides inducing cell growth arrest and apoptosis, 

p53 activation also modulates cellular senescence and 

organismal aging.(119)

 Genotoxic stress brought about by telomere attrition, 

impaired DNA repair, ultraviolet (UV) radiation, ionizing 

radiation (IR), chemicals, ROS and other mechanisms 

activates p53 and induces cellular growth arrest (in 

proliferating compartments), senescence or apoptosis. p53 

can impair mitochondrial function either directly or indirectly 

(through regulation of ROS-detoxifying enzymes). This 

p53-mediated mitochondrial dysfunction triggers a cycle of 

DNA damage, p53 activation, mitochondrial compromise 

and increased ROS levels leading to additional DNA damage, 

and so on. The mitochondrial compromise could contribute 

to organ dysfunction through decreased ATP generation, as 

well as changes in mitochondrial metabolism. The interplay 

between p53 and other pathways implicated in aging is also 

indicated. CR activates SIRT1, which decreases p53 activity. 

Also, SIRT1 (and possibly SIRT6) activates PGC-1α and 
boosts mitochondrial biogenesis.(1β0) PGC-1α increases 
antioxidant defence through upregulation of antioxidants 

(81), whereas p53 has been shown to increase or decrease 

the expression of antioxidants depending on cellular ROS 

concentrations (121). B-lymphoma Moloney murine 

leukemia virus insertion region-1 (Bmi1) loss has been 

shown to induce mitochondrial dysfunction directly and 

induce upregulation of p16/ARF.(1ββ,1βγ) ARF increases 
p53 activity through interaction with mouse double minute 

2 homolog (MDM2), the negative regulator of p53.(17)

  Applying regenerative metabolism principles to 

rejuvenate stem cell metabolism has the potential to 

deterministically alter the fate of differentiating tissues 

for improved function and repair capacity in aging and/
or disease. As a paradigm of metabolic repair, MSCs 

demonstrate a capacity to transfer mitochondria and rescue 

aerobic respiration in cells lacking mitochondria.(124) 

Mitochondrial transfer has also been observed during stem 

cell therapy following lung injury, resulting in elevated 

alveolar ATP levels, which contributes to protection 

and repair of pulmonary alveoli.(125) Next-generation 

regenerative platforms with optimized stem cell metabolism 

will thus be equipped to titrate metabolic competencies and 

accordingly regenerate tissues and organs.

 CR boosts the number and myogenic function 

of skeletal muscle stem cells, which is associated with 

the expression of the metabolic regulators SIRT1 and 

FOXOγα, mitochondrial biogenesis, and enhanced 
oxidative metabolism at the expense of glycolysis.(126) 

The way stem cells use energy and intermediate metabolites 

determines their prospects. Metabolic regimes shape self-

renewal proiciency, and fuel interconversion of versatile 
lineage identities. The orchestrated commissioning and 

decommissioning of metabolic pathways enables stem 
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cell differentiation, and also supports reacquisition of 

pluripotency.(95)

 SIRTs are a highly conserved family of NAD1-

dependent enzymes that regulate lifespan in lower organisms. 

Recently, the mammalian SIRTs have been connected to an 

ever widening circle of activities that encompass cellular 

stress resistance, genomic stability, tumorigenesis and 

energy metabolism.

 SIRT1 through its regulation of PPAR-Ȗ and PGC-1α 
activity has a signiicant regulatory role in fat mobilization 
and FAO.(1β8,1β9) The regulation of PGC-1α activity 
also suggests a role for SIRT  in the generation of new 

mitochondria, as PGC-1α is a key regulator of mitochondrial 
biogenesis. These observations, coupled with recent links 

between SIRT1 and autophagy (130), suggest that SIRT might 

regulate the lux of mitochondria within cells by balancing 
PGC-1α mediated generation with autophagy-dependent 

Figure 5. A model of interaction between DNA damage, p53 activation 

and mitochondrial dysfunction.(17) (Adapted with permission from Nature 

Publishing Group).

clearance. In addition to the connection between SIRT1 and 

the mitochondria, SIRT3-dependent deacetylation regulates 

the activity of the mitochondrial enzyme acetyl coenzyme 

A synthetase 2 (AceCS2) (131,132) as well as Complex I 

of ETC. Mitochondrial lysates from SIRT3-/- mice reveal 

>30 proteins whose acetylation is markedly increased, 

suggesting that other important targets undoubtedly exist.

(133,134) Finally, a very recent study has implicated SIRT5, 

another mitochondrial SIRT, as an important regulator of 

the urea cycle.(135)

 In mice treatment with resveratrol, 

(3,5,4’-trihydroxystil- bene), a diet-derived polyphenol, 

improved mitochondrial function and biogenesis in the 

skeletal muscle (114) and the liver (136). Studies in diabetic 

mice demonstrated that resveratrol treatment improves 

endothelial function and attenuates vascular inlammation 
in diabetes mellitus (137-141) and extends longevity 



26

The Indonesian Biomedical Journal, Vol.7, No.1, April 2015, p.15-30 Print ISSN: 2085-3297, Online ISSN: 2355-9179

Recent data suggest that we age, in part, because our self-

renewing stem cells grow old as a result of heritable intrinsic 

events, such as DNA damage, as well as extrinsic forces, 

such as changes in their supporting niches. Mechanisms 

that suppress the development of cancer, such as senescence 

and apoptosis, which rely on telomere shortening and 

the activities of p53 and p16INK4a, may also induce an 

unwanted consequence: a decline in the replicative function 

of certain stem-cell types with advancing age.

 Age-associated telomere damage, diminution of 

telomere ‘capping’ function and associated p53 activation 

have emerged as prime instigators of a functional decline 

of tissue stem cells and of mitochondrial dysfunction that 

adversely affect renewal and bioenergetic support in diverse 

tissues. Constructing a model of how telomeres, stem cells 

and mitochondria interact with key molecules governing 

genome integrity, ‘stemness’ and metabolism provides a 

framework for how diverse factors contribute to aging and 

age-related disorders.

 The need to develop therapeutic strategies to 

treat pathophysiological conditions in the elderly is 

therefore medically, socially, and economically crucial. 

Characterization of normal stem cell aging is the critical irst 
step toward achieving these goals as such research should 

be able to identify the mechanisms underlying stem cell 

functional decline and inform strategies for intervention.

Conclusion
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