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B
ACKGROUND: Attempts to understand the 

causes of obesity and develop new therapeutic 

strategies have mostly focused on caloric intake 

and energy expenditure. Recent studies have shown that the 

circadian clock controls energy homeostasis by regulating 

circadian expression and/or activity of enzymes, hormones, 

and transport systems involved in metabolism. Moreover, 

disruption of circadian rhythms leads to obesity and 

metabolic disorders.

CONTENT: Regularly alternating periods of light and 

darkness, such as normally occur with the rising and the 

setting of the sun, are essential for the maintenance of 

undisturbed circadian rhythms in all organisms including 

humans. The light-dark environment, as detected by 

specialized photoreceptors in the retinas, impacts the 

endogenous circadian clock in the anterior hypothalamus, 

the suprachiasmatic nuclei. These nuclei, via both neural 

and humoral signals, communicate with cells throughout 

the organism to establish regular circadian rhythms. The 

introduction of artiicial sources of light roughly 150 years 
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ago has signiicantly undermined the naturally occurring 
light-dark environment and, likewise, has disturbed 

circadian rhythms since light is now available at unusual 

times, i.e., at night. Light at night is known to cause circadian 

disruption and melatonin suppression. Many potentially 

pathophysiological consequences of these artiicial light-
mediated changes, include cancer, cardiovascular diseases, 

insomnia, metabolic syndrome, diabetes, and cognitive 

disorders may be aggravated by the increased exposure to 

light at night, which is inevitable in well-developed societies 

that have undergone extensive electriication.

SUMMARY: Therefore, it is plausible that resetting of the 

circadian clock can be used as a new approach to attenuate 

obesity. Feeding regimens, such as restricted feeding, 

calorie restriction and intermittent fasting, provide a time 

cue and reset the circadian clock and lead to better health. In 

contrast, high-fat diet leads to disrupted circadian expression 

of metabolic factors and obesity.

KEYWORDS: obesity, circadian clock, metabolism, 

chronodisruption
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Introduction

If the current trend continues as predicted, health care 

systems may be incapable of handling the myriad of 

obesity-related diseases. The inancial costs, including 
those due to medical procedures, absenteeism from work, 

and reduced economic productivity, will jeopardize the 

inancial well-being of industries.(1) Making matters worse, 

obesity is no longer an afliction limited to adults but it now 
affects the adolescent and younger populations as well.(2,3) 
Indeed, childhood obesity has become rampant, and, as a 

consequence, children are acquiring diseases and disorders 

that were typically only common in adults a couple decades 

ago. Moreover, humans have inlicted the obesity state on 
their pets as a result of over-feeding and by limiting their 

activity.

 Obesity has become a serious and growing public 
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health problem (1), but previous ways to combat obesity 
have failed, and new approaches need to be taken. Just 

like music has rhythm, lots of our daily lives aspects also 

have a regular timing for eating and fasting, sleeping and 

wakefulness. This second nature of our body were governed 

by an intricate system known as internal molecular clocks, 

which coordinating and maintaining the synchrony of body 

biological process between the environmental cycles of 

light and nutrients. The circadian system, as our body’s 

internal clock is a complex feedback network that keeps 

us in orchestrated sync with the 24 hours earth’s rotation. 

It involves the interaction between nervous system and 

peripheral tissues, linked to metabolic homeostasis, and 

conversely, having feedback signals from metabolic that 

modulate the expression and behavior of circadian gene.(4) 
 Social opportunities and work demands have caused 

humans to become increasingly active during the late 

evening hours, leading to a shift from the predominantly 

diurnal lifestyle of our ancestors to a more nocturnal one. 

This  voluntary decision to stay awake long into the evening 

hours leads to circadian disruption at the system, tissue, and 

cellular levels. These derangements are in turn associated 

with clinical impairments in metabolic processes and 

physiology.(5)
 In this review, we consider the potential role that the 

circadian system including the sleep/wake cycle and the 

melatonin rhythm may play in determining the accumulation 

of fat. Given that the daily endogenous melatonin cycle with 

low circulating levels during the day and elevated serum 

levels at night, along with the fact that light at night suppresses 

or distorts this regularly recurring rhythm, we proposed that 

excessive night-time light may contribute to physiological 

alterations that predispose to obesity. Moreover, circadian 

disruption and especially shortened daily sleep intervals, 

independent of the changes in the melatonin cycle, have 

been suggested to be contributory to metabolic diseases, 

which accompany obesity. The implication is that circadian 

disruption or chronodisruption.(1) And the resulting sleep 
deprivation and relative melatonin deiciency, alone or in 
combination, may be factors that make humans more likely 

to gain weight. If this is the case, there may be behavioral 

adjustments that humans could make to redress, at least 

partially, the continuing and mounting problem of obesity.

Chronobiology and Metabolism

eighteenth century. It came out with Linnaeus, who designed 

a beautiful “loral clock” that represented the hours of the 
day depending on the time that lowers open their petals. 
Among human beings, the circadian rhythms are so inherent 

to our lives that we do not even notice them. Perhaps this 

is the reason why in the medical practice the circadian 

variability of the hormones, metabolites, and physiological 

behaviors or the relevance of time in the presence or absence 

of different pathologies has been practically ignored in the 

past.(6)
 The discovery of the Circadian Locomotor Output 

Cycles Kaput (CLOCK) mutant mouse in 1994 and the 
identiication and cloning of the gene underlying the 
mutation, named CLOCK, was a landmark inding in the 
history of the ield of mammalian circadian rhythms. 
Unexpected at the time, the discovery of the CLOCK 

mutant animal would eventually lead to an entire new 

approach to the study and treatment of obesity. The report 

in 2005 that the CLOCK mutant animal is obese and shows 

signs of the metabolic syndrome (MetS) opened up an entire 
new ield of obesity research.(7) The circadian system of 
mammals has three main components: circadian clocks, 

the input pathways, which participate in environmental 

synchronization (or entraining), and the output pathways, 
which transmit the temporal circadian signals to the rest of 

the effector systems of the organism (Figure 1).(7)
 In mammals, the principal circadian clock or master 

pacemaker is located in the suprachiasmatic nuclei (SCN) 
of the hypothalamus.(9,10) These are two small nuclei 
composed of several thousand neurons located each side of 

the third ventricle in dorsal position with respect to the optic 

chiasm. With their rhythmic activity, the SCN are responsible 

for most circadian rhythms of mammals, as revealed by 

lesion studies, which result in arrhythmicity in most of the 

variables recorded. In contrast, the transplantation of SCN 

from donor to arrhythmic SCN-lesioned animals restores 

the rhythmicity, conirming that the SCN is a circadian pace 
maker in mammals.(11) Besides the principal hypothalamic 
pacemaker, the circadian system is composed of numerous 

secondary oscillators (cerebral cortex, liver, kidney, adipose 
tissue (AT)), which are capable of producing circadian 
oscillations and which in normal conditions are under the 

control of the SCN.(12,13) However, these oscillators can 
also operate autonomously for several days in tissue cultures 

and can be synchronized by periodical signals other than 

light, such as temperature cycles or nutrient availability.

 Both in the SCN and in the peripheral oscillators each 

cell behaves as an autonomous circadian oscillator. At cell 

level, the circadian oscillators are the result of the existence 

of positive and negative feedback loops in which the 

Chronobiology, deined as the science that studies the 
circadian (around a day) rhythms of biological beings, is 
a relatively new science which was irst discovered in the 



 ͳͳͻ

Chronodisruption and Obesity (Meiliana A, et al.)
Indones  Biomed J.  2015; 7(3): 117-28DOI: 10.18585/inabj.v7i3.184

Figure 1. General organization of 

mammalian circadian system.(8) (Adapted 
with permission from Springer).

AT as A Peripheral Clock

products of the expression of given genes inhibit their own 

transcription, generating a rhythmicity of around 24 hours.

(14) The main components that have been identiied in the 
clock of mammals are: the CLOCK and Brain and muscle 

aryl hydrocarbon receptor nuclear translocator (ARNT)-like 
protein (BMAL)1 genes as positive elements, and the period  
((PER)1, PER2 and PER3) genes and the cryptochromes 
((CRY)1 and CRY2) as negative elements.(15) CLOCK 
and BMAL1 proteins are transcription factors that possess 

the functional domain bHLH (“Basic Helix-Loop-Helix”) 
which confer them with a DNA binding capacity. These 

proteins heterodimerize in the cytoplasm through PAS 

domains (a name derived from the three proteins they share, 
PER-ARNT-Singleminded protein (SIM)) and translocate 
to the nucleus, where they activate the transcription of given 

target genes (PER, CRY, Rev-Erba) and CLOCK Controlled 
Genes (CCG), including key regulators of the cell cycle and 
metabolism.(16)
 The negative feedback loop comprises the 

heterodimers PER:CRY which translocate to the nucleus 
where they suppress their own transcription by inhibiting 

CLOCK and BMAL1 activities. Meanwhile, the protein 

Rev-Erba suppresses BMAL1 transcription by binding to 

the elements conforming the response to Rev-Erba/RAR-

related orphan receptor (ROR) present in their promoter. 
Consequently, the RNA levels of BMAL1 diminish, while 

those of PER and CRY increase. When the heterodimers 
CRY:PER suppress their own transcription at nuclear level 
(through acting on CLOCK-BMAL1), they also inhibit the 
transcription of Rev-Erba, permitting the transcription of 

BMAL1 to be activated.

 The approximately 24 hours rhythmicity of the 

molecular CLOCK mainly derives from post-translational 

modiications such as phosphorylation and ubiquitination, 
processes which affect the stability and translocation of the 

clock genes to the nucleus. In this way, the casein kinase 1 

epsilon (CK1e) and casein kinase 1 delta (CK1d) are critical 
factors that modulate the functioning of the CLOCK.(17)
 Although still in the early stages of discovery, linking 

circadian clock genes to energy regulation has clear 

implications for future studies on body weight regulation 

at the mechanistic level, as well as for the development of 

new therapeutic approaches for combating the epidemic of 

obesity, as well as metabolic disorders, including diabetes.

(7) Clinical and epidemiological studies have shown the 
interaction between the circadian system disruption or 

chronodisruption and some pathologies very frequent 

in developed countries, such as cancer, obesity, MetS, 

insomnia, cognitive and affective disorders and premature 

aging.

AT currently known as a complex and highly metabolic 

endocrine organ, not only functioning as a storage but also 

express and secrete a variety of bioactive peptides, so-

called adipokines, involved in coordinating numerous of 

biological process including energy homeostasis, adipocyte 

differentiation, body fat distribution and dyslipidemia, even 

has an outstanding role as a depot for active circadian clock.

(17)  
 Recent indings showed an expression of CLOCK 
genes in human AT, responsible to the changes of different 

component of MetS (18), and this genes has been shown 
to oscillate SCN accurately and independently in human 

AT explants (12), participating in 
regulating the timing of other CCGs 

such as Peroxisome proliferator-

activated receptor (PPAR)-g and 

glucocorticoid metabolism genes 

(12,19). Moreover, these circadian 
patterns differ between visceral and 

subcutaneous AT depots.(12,19) 
Other evidence that suggest a close 

relationship between circadian 

rhythms and adipose biology could 

be the fact that 24 hours rhythms 

have been reported in the plasmatic 

concentration of leptin and adiponectin 
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in humans (20,21), being both adipokines.
 There is a strong correlation between circadian 

system and AT metabolism, and some evidence showed that 

this circadian system affecting the alteration of adipocyte 

sensitivity to speciic stimuli (e.g., insulin, adrenaline) 
and adipocyte intrinsic nature for diurnal variation.(22-
24) Adipocytes have to adjust the lipogenesis (the rates of 
triglyceride synthesis) and lipolysis (the rates of triglyceride 
breakdown) over the 24 hours course simultaneously. These 
diurnal variations inluenced by neurohormonal factors. 
Some adipocyte-speciic factors such as leptin, resistin, 
adipsin, adiponectin, visfatin, glucocorticoid, showed 

circadian rhythmicity become a good evidence for AT 

rhythmicity in mammals.(12) Adiponectin, a protector 
against MetS disturbances (25), shows the daily pattern of 
both ultradian pulsatility and a diurnal variation, out of phase 

with leptin, with a signiicant decline at night and reaching a 
nadir in the early morning.(26,27) Emerging evidence from 
both cell-based and human studies suggests that expression 

of the circadian clock transcription network within AT may 

inluence both adipogenesis and the relative distribution of 
subcutaneous versus visceral depots.(18,28,29)
 In AT, the clock machinery controls the expression 

of a large array of enzymes involved in lipid metabolism. 

Indeed, adenovirus-mediated expression of BMAL1 in 

3T3-L1 adipocytes resulted in induction of several factors 

involved in lipogenesis, whereas BMAL1 deletion in 

adipose cell lines resulted in impaired adipogenesis.(30) 
Furthermore, heme, the Rev-Erba/b natural ligand, has 

long been known to enhance adipocyte differentiation in 

vitro.(31) Activation of sirtuin (SIRT)1, which regulates the 
clock network, may increase insulin sensitivity and reduce 

the inlammatory response in adipocytes (32,33), however it 
is unclear whether the effect is direct or not.(34)
 A temporally restricted feeding experiments in 

mice have revealed a coordinated phase-shift in circadian 

expression of core clock genes ad their AT downstream 

targets.(35) In addition, high fat diet (HFD) also alters 
the cyclic expression and function of core CLOCK genes 

and CCGs in AT, resulting in disrupted fuel use.(36,37) 
Of further interest, CLOCK gene disruption targeted to 

the fat body in lies is suficient to induce increased food 
consumption, decreased glycogen levels, and increased 

sensitivity to starvation.(38) In addition to effects of 
circadian transcription on intracellular metabolic pathways, 

clock dysregulation in AT and/or misalignment with meal 

times may lead to inappropriate expression patterns of 

enzymes involved in lipid metabolism such as lipoprotein 

lipase.(28) For example, misalignment between the 
fasting/feeding cycle and lipogenic and/or lipid catabolic 

gene expression pathways may perturb fatty acid lux and 
contribute to lipotoxicity. Indeed, circadian synchrony may 

play a distinct role not only within different tissue types 

(liver versus muscle) but also within distinct adipose depots 
(visceral versus subcutaneous).(12) It is further possible 
that differences of circadian gene expression patterns within 

visceral AT and subcutaneous AT depots may contribute to 

cell-autonomous differences in inlammatory, lipogenic, 
and/or lipolytic pathways within these locales.(39,40) The 
limited storage-capacity of fat and/or increased lipolysis 

results in an overlow of fatty acids to ectopic sites such 
as liver, muscle, and islets.(41,42) Interestingly, both have 
been proposed to be involved in the etiology of the MetS.

(43,44)
 Circadian regulation may extend to effects within 

AT on endoplasmic reticulum (ER) stress, an important 
component of the inlammatory response in this tissue.
(45) Obesity results in conditions that increase demand 
on the ER in metabolic tissues including liver, adipocytes 

and pancreas, resulting in a persistent inlammatory state. 
For example, accumulation of reactive oxygen species 

(ROS), which are abundantly produced by both the ER and 
the mitochondria during conditions of stress are increased 

in metabolic organs in MetS.(45,46) In AT, ER stress is 
involved in adipogenesis and adipokine oversecretion.

(47,48) Interestingly, the ER chaperone protein, binding 
immunoglobulin protein (BiP), a key protein involved in 
the ER stress response, is expressed in a circadian manner 

in lies. It has also been reported that CLOCK genes may 
inluence the production of ROS.(4,49,50) Thus, disrupted 
synchrony of stress response gene expression may alter 

adipose function and thereby directly contribute to insulin 

resistance (IR). ER stress may also be induced in brain 
following high fat feeding, thereby contributing to leptin 

resistance (51) and perhaps circadian and sleep disturbances 
(34,52). Thus, any adequate temporal order in these genes 
daily pattern implicated in AT metabolism could affect 

not only in body fat distribution, but also have important 

consequences to alter the obesity-related metabolism. We 

still need further investigation to provide insight into the 

metabolic disease etiology and the physiology of energy 

homeostasis.

Melatonin and Cortisol as 

Circadian Markers

One obvious cycle that clearly depends on the prevailing 

light-dark cycle and the function of the SCN is the melatonin 

rhythm. All vertebrate species, regardless of their speciic 
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circadian activity pattern, experience elevated pineal 

melatonin production and secretion during the night, with 

minimal synthesis during the day. As a result, melatonin is 

often referred to as the ‘chemical expression of darkness’.

(53) Since pineal melatonin is quickly released once it is 
produced, the melatonin rhythm in the blood relects its 
synthesis within the pineal gland. The melatonin cycle has 

a number of essential physiological actions. One important 

function is to apprise cells in the organism as to whether it 

is day or night, with the cells then using this information 

to adjust their metabolic activity accordingly.(54) Thus, 
although the SCN has alternative means in addition to 

the melatonin cycle for signaling light or darkness at the 

cellular/organ level, there is little doubt that the luctuating 
melatonin levels play an important role in conveying 

essential timing information to many organs.(1)
 The metabolic pathway of tryptophan that culminates 

in melatonin generation is well known. The quantity of 

serotonin in the gland is determined by the activity of 

tryptophan hydroxylase (TPH). The expression of TPH 
mRNA as well as the activity of the enzyme vary over a 

light-dark cycle and are clock-driven rhythms; peak levels 

of both occur at night, coincident with maximal melatonin 

generation.(55) Whereas the rate of melatonin synthesis 
from serotonin is generally considered to be coupled to the 

activity of arylalkylamine N-acetyltransferase (AANAT) 
(56), there are times when this may not be the case (57). It 
is usual that the rhythm of pineal AANAT runs in parallel 

with that of pineal and blood melatonin levels with all 

three parameters exhibiting peak levels at night. Thus, it is 

generally accepted that the concentrations of melatonin in 

the peripheral circulation can be used as an index of the 

metabolic activity of the pineal gland at virtually the same 

time.(58)
 The essential nature of melatonin synthesis in the 

pineal gland is that its rhythm provides all species with a 

circadian melatonin signal which is essential for a number 

of the physiological effects of this functionally diverse 

molecule.(58) A large body of evidence supports the key 
role of endocrine rhythms in the peripheral oscillator 

physiology. Numerous hormones display circadian 

rhythms, and many of them depend, directly or indirectly, 

on the rhythmic SCN output.(59-63) Within the hormonal 
network, high circadian amplitudes are especially found in 

several hypophyseal hormones, in glucocorticoids and in 

melatonin, so that their respective signaling mechanisms 

should be of utmost importance for optimal peripheral 

phase relationships.(64) The requirement of melatonin for 
the maintenance of robust circadian rhythms is even evident 

in the peripheral oscillator of the adrenal cortex, a tissue that 

is otherwise strongly inluenced by the adrenocorticotropic 
hormone (ACTH) rhythm.
 The requirement of melatonin for maintaining speciic, 
and presumably favorable, phase relationships between 

oscillators in the central nervous system and in peripheral 

organs implies that disturbances, deiciencies, and disorders 
of melatonin secretion should have profound inluences on 
the functioning of the entire circadian oscillator system. This 

would include light at night, for example, because of shift 

work, age- or disease-dependent decreases of melatonin, 

and congenital atypical secretion patterns as well (Figure 
2). With regard to the rapidly accumulating evidence for the 
importance of a well-functioning circadian oscillator system 

in maintaining an optimal health status, and to the remarkable 

complexity of this system composed of numerous, potentially 

variably coupled central and peripheral oscillators, the role 

of melatonin as an internal coupling agent may require re-

deinition and gain signiicance. This would be in addition 
to known health-relevant effects concerning, for example, 

immunomodulation, antiinlammatory, antiexcitatory, and 
oncostatic actions, as well as antioxidative protection by 

melatonin. Moreover, melatonin-controlled phasing and 

coupling may turn out to be essential components in all 

these areas of protection.(64)
 In the circadian orchestra, different biological rhythms 

are the output of  SCN.(66,67) Thus, for example, melatonin 
peaks during the night in response to nocturnal activation 

by SCN of the limitant enzyme AANAT in the pineal gland, 

while cortisol peak should occur in the morning in response 

to suprarenal activation by ACTH, which in turn, is under 

SCN control.(68) When the orchestra is out of tune within 
our body, we talk about chronodisruption.(65)
 One easily measurable rhythm that is obviously 

disordered by alterations of the circadian clock is the sleep/

wake cycle. This is readily seen in the phenomenon of 

‘jet lag’.(69) Performing rapid transmeridian travel across 
multiple time zones, particularly in an easterly direction, 

requires the SCN to readjust its signal to the new light: 

dark environment after arrival. During this period of 

readjustment, individuals experience sleep disturbance, 

increased fatigue and general malaise, i.e., ‘jet lag’, with 

conspicuous disturbances in the 24 hours melatonin cycle.

(70)
 The pineal hormone, melatonin, is a messenger of the 

light-dark alternation in our environment and is thought to 

serve as synchronizer for circadian rhythms and seasonal 

variations. Its circadian periodicity may be understood as 

a coordinating signal for other biological rhythmicities, or 

as an “endogenous synchronizer”.(71) Plasma melatonin 
levels have been shown to be a good biomarker of circadian 
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dysregulation and have been associated with shift work and 

exposure to light-at-night in both laboratory-based and ield 
studies. Among other circadian markers, rhythms (such as 
core body temperature) remain comparatively robust in the 
presence of various external inluences.(72)
 Melatonin is considered the best marker of the 

circadian system phase. However, its proile is strongly 
inluenced by light exposure and, to a lesser extent, body 
position, physical activity, sleep, caffeine and drugs like 

non-steroidal anti-inlammatory drugs (NSAIDS) and 
beta-blockers.(73-79) Plasma levels of melatonin show a 
circadian proile, with low levels during the day and high 
levels during the night, the highest being between 02:00 and 

04:00 a.m. In humans, melatonin contributes to the body 

temperature rhythm since it is responsible for vasodilatation 

of the skin of the extremities through its activation of 

thermosensitive neurons present in brain areas involved 

in sleep regulation. The melatonin secretion schedule is 

closely related with the propensity to sleep and coincides 

with a fall in the central body temperature, arousal level and 

performance.(80) The levels of melatonin can be reliably 
measured in plasma, saliva and urine (in the last case as its 
metabolite, 6-sulfatoximelatonin). The best time to evaluate 
melatonin as a marker of the circadian rhythm coincides 

with its rapid increase at nightfall. Since its levels are altered 

by exposure to environmental light of a given intensity and 

spectrum, it is generally accepted that melatonin samples 

taken during the dark period should be collected under a 

dim light (<50 lx) (81), which is why this protocol is known 
as DLMO (Dim Light Melatonin Onset). It is suficient to 
start sampling 2-3 hours before the subject’s normal bedtime 

(around 19:30-22:00), assuming that the individual shows 
no phase alterations.(17)
 Cortisol is a corticosteroid with a robust circadian 

proile, peaking around the usual waking time and with much 
lower values as the day progresses and reaching its lowest 

value about 2 hours after going to sleep. The physiological 

signiicance of this increase consists of preparing the body 
for the forthcoming days, increasing the blood pressure, 

plasma concentrations of glucose, cardiac output, etc. 

Because of its robustness, this rhythm is also considered a 

good marker of the circadian system. Similarly to the other 

variables mentioned above, cortisol levels can be affected by 

external factors such as stressful situations, light exposure at 

given moments of the day (82), or hyperproteic meals (83). 
Non-pathological situations such as aging also affect the 

cortisol proile.(84) The sleep-wake proile can even modify 
cortisol rhythm. Sleep deprivation, the predominance of 

light sleep, and a certain number of nocturnal awakenings 

will increase cortisol levels.(85) Cortisol can be measured 
in serum or saliva, the most critical times for measuring 

its circadian proile being the increase just before waking 
up and its minimum level in blood at the end of the day/

beginning of night.

 The effects of melatonin on brown AT (BAT) may be 
attributed to both its central and/or peripheral activities. It 

is well known that BAT is readily regulated by neurons of 

the hypothalamus, especially, the SCN.(86-88) Membrane 
melatonin receptors are found in SCN.(89) Environmental 
information such as photoperiodic alterations change the 

melatonin message that is conveyed to the SCN.(90,91) 
Melatonin membrane receptors, especially the MT

1
, have 

been found in SCN.(92-94) With the aid of retrograde 
transneuronal viral tract tracer methods, the anatomical 

pathway connecting of SCN to BAT was identiied as 
involving the sympathetic nervous system.(95) Thus, 
Bartness, et al., hypothesize that the thermogenic effects of 

Figure 2. Overview of the roles of melatonin in the 

circadian multioscillator system.(65) Kir3: Cardiac 
inward rectiier 3. (Adapted with permission from 
Wiley & Sons).

BAT induced by the melatonin rhythm in the 

Djungarian hamster is related to an increased 

sympathetic neural outlow.(96)  Simply, the 
stimulation of the MT

1
 receptors located on 

SCN neurons increases the sympathetic drive in 

several peripheral tissues that may also include 

BAT. As a consequence, melatonin acting on 

SCN increases noradrenaline turnover, gene 

expression of uncoupling protein  (UCP)1, 
PPAR-g, PPAR-g co-activator-1 (PGC1) in 
BAT. UCP1 is a unique protein that allows BAT 

to function in nonshivering thermogenesis. 
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Sleep, Why Do We Need It?

PPAR-g and PGC1a are key factors for brown adipocyte 

differentiation, and they are also stimulators of mitochondrial 

biogenesis (important in BAT, which is brown because of the 
presence of cytochromes in their numerous mitochondria).
(97)
 Nocturnin (Noc) is a robustly rhythmic gene that 
encodes a deadenylase thought to be involved in the 

removal of polyA tails from mRNAs. Mice lacking the 

Noc gene suggest in part to reduce lipid traficking in the 
small intestine thus be resistance to diet-induced obesity 

and hepatic steatosis. In other tissue, Noc appears to play 

important roles in lipid metabolism, adipogenesis, glucose 

homeostasis, inlammation and osteogenesis, also is a 
potential key post-transcriptional mediator in the circadian 

control of many metabolic processes.(98)

Why do we need it? Why do we spend so much of our life 

doing it? And what is this strange alternative reality we 

experience while we sleep? These big questions still loom 

large, but researchers have been focusing on more practical 

matters. We now know how an intricate interaction of 

neurotransmitters in different parts of the brain switches us 

from being fully alert to unconscious, and back again.(99) 
But the brain does not shut down, studies of its electrical 

activity are revealing how sleep boosts learning, providing 

tantalizing clues to the formation of memory.(100)
 A night’s sleep has ive distinct phases, which the 
brain cycles through roughly every 90 minutes. In rapid 

eye movement (REM) sleep, the brain’s electrical activity 
looks much as it does when someone is awake. Researchers 

assumed that REM was when dreams took place, and 

that in dreams, perhaps, memories are consolidated, the 

brain replaying the day’s experiences and storing them as 

enduring recollections.(100) Sleep is proving important for 
more than the mind. Studies that restrict the duration and 

quality of sleep show that lost sleep can lead to metabolic 

disorders, immune dysfunctions and chronic disease.

(101) And researchers are probing the link between sleep 
disruption and weight gain.(102)
 Mullington and her colleague Monika Haack later 

found that limiting participants’ sleep to 4 hours per 

night for 12 nights can affect the immune system too.

(103) Towards the end of the experiment, sleep-deprived 
individuals showed elevated blood levels of the immune 

signaling molecules interleukin (IL) and C-reactive protein 
(CRP), both of which have been linked to inlammatory 
problems such as coronary artery disease.(101)

 Too much sleep can also be a problem, though. In 

2009, Sanjay Patel and Susan Redline, both now at the 

Brigham and Women’s Hospital in Boston, Massachusetts, 

showed  that people who say they sleep more than 8 hours 

per night have elevated blood levels of IL-6, CRP and 
tumor necrosis factor (TNF)-α, another cytokine involved in 
systemic inlammation.(104) The interaction between sleep 
and metabolism is complicated by the poorly understood 

relationship between sleep and the body’s natural circadian 

rhythms. If you disrupt circadian rhythmicity, you’re going 

to have effects on the sleep-wake cycle, and if you disrupt the 

sleep-wake cycle, you’re probably having effects on various 

circadian rhythms as well.(102) But there is mounting 
evidence that getting the right amount of healthy sleep can 

be just as important as diet and exercise in controlling your 

metabolism, and can do a world of good beyond making you 

wake up happy in the morning.(102)
 At the root of many sleep problems is the way 

modern life, especially the advent of artiicial light, has 
decoupled humans from the natural world, disrupting the 

brain’s master clock.(105) Projects are underway to track 
this desynchronization and reveal how people differ in their 

tendency to sleep.(106) A lack of sleep can have pernicious 
effects in those with a mood disorder, and understanding 

why should help them manage these conditions.(107)

Chronodisruption, Obesity, and MetS

In several conditions such as jetlag, shift work, light at 

night, or social jet lag the normal phase relationship between 

24 hours environmental cycle with the internal circadian 

rhythms can be broken down. A relevant disturbance 

of physiological and behavioral circadian rhythms as a 

temporal disorder lie this deined as circadian disruption.
(108) In addition clock gene polymorphisms and aging 
may have also chronodisruptive effects. Thus, circadian 

disruption can be induced by any impairment of the inputs, 

oscillators and outputs (Figure 3).
 Jet lag and rotating shift-work are two well 

documented factors inducing chronodisruption. These 

two factors share a common mechanism in the circadian 

disruption generation involving the differential rates for 

biological variables synchronization. This may be the 

result of the different contribution of SCN and peripheral 

oscillators to the generation of biological rhythms in 

different variables. For example, following a 6 hours phase 
delay, the acrophase of ACTH and cortisol rhythms need 

up to 7 days to resynchronize, while it takes only 3 days 
in the case of sleep-wake cycle. Thus, during these time, 
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Figure 3. Causes and consequences of 

chronodisruption. Circadian disruption is the 

result of an abnormal phase relationship between 

the rhythms regulated by endogenous oscillators 

(solid line) and activity-controlled physiological 
processes (dotted line).(109) (Adapted with 
permission from Springer).

there’s a different rate shifting for each function, therefore 

the organism has to re-organized in order to accomplish its 

eficient functions back.(108) This condition is even more 
serious in the case of shift-workers because its chronic 

character. Circadian disruption can also be produced by the 

impairment of the molecular machinery of the circadian 

clock; however, discerning the relative inluence of disrupted 
circadian rhythms induced by clock gene alteration from the 

potential pleiotropic effects of core CLOCK gene inducing 

pathological process will therefore be a challenge.(110) 
Some speciic disease was associated with CLOCK genes 
alteratrion, such as premature aging, cancer, and obesity 

among others.(111)
 In the situation where light is extended into the normal 

period of darkness and light exposure also occurs in the 

morning before sunrise, the SCN must adjust its signaling 

processes accordingly; one result of this imposed artiicial 
light is a shortening of the nightly duration of melatonin 

production by the pineal gland.(112) Thus, in highly 
industrialized societies, humans have become relatively 

melatonin deicient since they truncate the normal period of 
darkness and, thereby, the duration of elevated melatonin. 

In general, the only time humans are in darkness is when 

they sleep. Thus, depending on their nightly sleep duration, 

which is also becoming progressively shorter in developed 

societies (113,114), the total amount of melatonin produced 
may be reduced by 50 % or more relative to what would 

have been generated had they been exposed to the natural 

light-dark cycle. Given the multiple beneicial actions of 
melatonin, a 50% loss of the total amount of melatonin 

nightly would be expected to have consequences, including 

negative effects, i.e., pathologies.(109,115,116)
 Recent studies link energy regulation to the circadian 

clock at the behavioral, physiological, and molecular levels 

(117-119), emphasizing that the timing of food intake 

itself may play a signiicant role in weight gain (120). The 
mammalian circadian clock inluences nearly all aspects 
of physiology and behavior, including sleep-wake cycles, 

cardiovascular activity, endocrine system, body temperature, 

renal activity, physiology of the gastrointestinal tract, and 

hepatic metabolism.(13) Disruption of circadian coordination 
may be manifested by hormone imbalance, psychological 

and sleep disorders, cancer proneness, and reduced life 

span.(13,121-124) In contrast, robust circadian rhythms 
lead to well-being and increased longevity.(125,126) This 
correlation reveals the prominent inluence of the circadian 
clock on human physiology and pathophysiology.

 A major problem with the activities of modern humans 

is that we are living a twenty-irst century life-style with an 
ancient genome, which is not compatible with the artiicially 
altered photoperiods. Thus, humans have corrupted the 

fundamental circadian physiology by polluting night-time 

darkness with light. This extraordinary perturbation of the 

regularly recurring light-dark environment, a cycle which 

has existed throughout human evolution, has negative 

consequences on the most critical functions of the SCN and 

all peripheral oscillators. Over millions of years of evolution, 

humans (indeed, all animals) became physiologically 
dependent on the stable changes in day and night and, in 

fact, vertebrates evolved a clock, the SCN, to use the light-

dark cycle to their advantage.(1)
 It is not surprising that these drastic changes in the 

environment would lead to metabolic disturbances. Karlsson 

and co-workers conducted a large epidemiological study of 

the association of shift work with metabolic disorders and 

found these individuals typically had an increased incidence 

of general obesity, abdominal obesity, hyperglyceridemia, 

depressed high-density lipoprotein, diabetes, and 

cardiovascular abnormalities.(127) This population-based 
study included 27,485 individuals. The indings clearly 

showed that the excessive weight gain is 

not the only disorder that accompanies 

chronic shift work, but also the expected 

co-morbidities that are a consequence of 

obesity were present.(1)
 Within the last decade, the 

dependence of metabolism on the 

circadian system has been intensively 
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investigated.(128) A variety of hormones known to be 
involved in the control of metabolism, e.g., cortisol, insulin, 

glucagon, and growth hormone; luctuate in a circadian 
manner. Circadian mechanisms of cells also regulate some 

metabolic enzymes such as those related to cholesterol 

metabolism.(128-130) Moreover, nuclear receptors related 
to the metabolism of glucose and lipids exhibit circadian 

rhythms.(131) Fonken and colleagues report concluded 
that the timing of food intake (rather than the total amount 
of food consumed, which was not inluenced), due to 
chronodisruption, was critical in mediating the observed 

increased weight gain.(132) It was speculated that nocturnal 
illumination led to metabolic abnormalities resulting from 

circadian rhythm misalignment. Fonken, et al., cited other 

papers which also showed that metabolic circadian rhythm 

perturbations including that of the 24 hours melatonin 

cycle are intrinsically related.(120,133,134) The speciic 
metabolic alterations that in fact occur under conditions of 

circadian disruption have not, however, been well deined.
(1)
 Circadian disruption, sleep deiciency, and melatonin 
suppression have at least one common causative feature, 

i.e., excessive light exposure including even brief periods 

of light at night. Indeed, interrupting the normal dark 

period with a short interval of bright light may be the most 

disruptive. Certainly, light pollution throughout the world, 

and especially in the economically well developed and 

developing nations, where obesity is also the most common, 

has become a major problem and is a serious concern.(1) A lot 
of studies focused on the pathophysiological consequences 

of chronodisruption, and suggested thatc chronodisruption 

can be considered as a risk factor for obesity development, 

but very few have been published about developing an 

effective strategy to reduce obesity and MetS by resetting 

the circadian system (chronoenhancement).(111)
 There are three levels of potential therapeutic 

interventions based on the functional organization of 

the circadian system can be provide for establishing a 

chronobiological-based therapy for obesity: pacemakers 

input, pacemakers themselves, and pacemakers output 

(Figure 4).(108)

Figure 4. Different strategies in the treatment 

of obesity from a chronobiological perspective.

(115) (Adapted with permission from Nature 
Publishing Group).

Fluctuations in body weight have been associated with 

changes in day length in various species, suggesting a 

central role for the circadian clock in regulating body 

weight. Thus, it seems that the circadian clock plays a major 

role in determining body weight probably by inluencing 
the expression and secretion of hormones. Similarly to the 

control of the circadian clock on metabolism, feeding is a 

very potent synchronizer (zeitgeber) for peripheral clocks. 
Resetting the biological clock by food or feeding time 

may lead to better functionality of physiological systems, 

preventing metabolic disorders, promoting well-being, and 

extending life span.

Conclusion
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