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Introduction

The prevalence of obesity keeps increasing globally and 
become a major health issue (1,2) with high comorbidities 
and poor health-related quality of life (HRQoL) (3),  and 
mortality risk (4). A new phenotype of obesity has gained 
attention over the past 20 years known as sarcopenic obesity 

(SO), characterized by the obesity (5) and sarcopenia (6), 
an increase in body fat mass deposition, a decrease in lean 
mass, and a decrease in muscle strength (7). Aging process 
have a significant contribution in SO pathophysiology. The 
exact prevalence of SO is hard to determine regarding the 
fact of insufficient diagnostic standards and definition.(8,9)
	 Skeletal muscle is the largest tissue in human body, 
count for almost 50% with essential numerous physiological 
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R E V I E W  A R T I C L E

BACKGROUND: Age contributes to body composition alteration, rises a common disorder in elderly known as 
sarcopenic obesity (SO), which is characterized by the combination of obesity (excess fat mass) and sarcopenia 
(reduced skeletal muscle mass) clinical form and function. 

CONTENT: The primary cause of SO is insulin resistance. Glucose transporter 4 (GLUT4)  dysfunction results in impaired 
fatty acids oxidation. Decreased muscle mass results in lower mitochondria number and volume. Both will increase oxidative 
stress. Together with altered myokines in SO, oxidative stress was promoted and lead to higher M1 macrophages and failure 
in autophagy. The pro-inflammatory condition and dysbiosis links SO to a variety of cardiometabolic conditions, including 
non-alcoholic fatty liver disease, type 2 diabetes, and cardiovascular disease. The mortality, comorbidities, cardiometabolic 
diseases, and disability or impairment of SO is higher compare to obesity or sarcopenia alone. Some treatments have been 
developed for SO including adequate dietary intake, vitamin D and antioxidant supplementation, and exercises.
SUMMARY: SO is more prevalent among the elderly and has a significant negative impact on their quality of life. Therefore, 
maintaining muscle mass and strength as well as preventing obesity should be the key goals of initiatives to support healthy 
aging. 
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processes. It produces energy, which controls human 
movement, and it takes role in preserving homeostasis 
by carrying out metabolic processes. Human health is 
significantly impacted by any decline in the skeletal 
muscle's contractile tissue and metabolic characteristics.
(10) Thus, we also need a regular assessment of muscle 
mass and function.(11) 
	 Since the average life span has increased recently, age-
related loss of skeletal muscle mass and function have been 
extensively examined and represent a significant current 
and future public health concern. Less research has been 
done on its connection to cardiometabolic disorders, though. 
Sarcopenia is characterized by both muscular atrophy and 
dysfunction, which lead to problems in metabolism and 
endocrine function as well as contractile impairment. It 
contains measures pertaining to force, functional capacity, 
and body fat percentage, and it impacts immune system and 
inflammatory response as well as whole-body metabolism.
(11,12) Genetic predisposition has a significant influence in 
the development of sarcopenia, which is a complex process. 
Some studies demonstrated the relationship between SO 
and weight-related comorbidities, (such as type 2 diabetes 
(T2DM), hypertension, etc.); and it is not yet understood 
how SO contributes to the development or worsening of 
these conditions.(8) Furthermore, few studies have been 
conducted in this field on SO, psychosocial comorbidities 
(such as depression and eating disorders), HRQoL, and 
harsh long-term outcomes like mortality. Ultimately, while 
some studies argue that it is necessary to address this trait, 
there is no validated strategies have been provided to prevent 
or cure it. Because of this, SO has been deemed a scientific 
and clinical priority by the European Society for Clinical 
Nutrition and Metabolism and the European Association for 
the Study of Obesity.(13,14) In this review article, recent 
insights to increase public awareness on SO characteristics, 
mechanisms, comorbidities, and therapeutic opportunity 
would be discussed.

the loss of skeletal muscle mass and function; and 2) negative 
clinical interactions between obesity and sarcopenia that 
work together to increase the risk of metabolic disease and 
functional impairment more than the cumulative risk from 
each condition alone.(16,17)
	 The current criteria for sarcopenia and obesity should 
not be used to define SO. Sarcopenia is specifically defined 
as reduced skeletal muscle mass and function (appendicular 
lean mass in age-related primary sarcopenia); nevertheless, 
alterations in muscle mass should be taken into account 
in relation to obesity. Due to motor or cardiorespiratory 
issues, excess body fat may also significantly contribute to 
functional impairment and disability in and of itself. This 
suggests that components of skeletal muscle and fat have a 
synergistic detrimental effect on the clinical consequences 
of SO. Due to the changes in body composition that are 
often associated with aging, SO is more common in older 
persons.(18)	
	 Due of the increased likelihood of developing 
age-related sarcopenia, it is therefore suggested that all 
individuals with obesity and overweight who are over 70 
should be seen as being at risk of getting SO. It is suggested 
that this population be routinely evaluated under the 
guidance of muscle functional testing. The screening for SO 
can be carried out by a variety of health care professionals 
(HCPs), including nurses and general practitioners, who may 
or may not be experts in the fields of obesity and sarcopenia. 
Somehow, due to the absence of data, it has been difficult 
to determine the reference ranges for each race or ethnic 
group.
	 A number of chronic illnesses that are known to 
increase the risk of losing muscle mass and function, as 
well as dietary imbalances or catabolic processes that may 
result in muscle loss, are additional risk factors. Thus, SO is 
not exclusive to elderly. A number of risk factors, including 
inflammation, insulin resistance, and clustering systemic 
and muscle oxidative stress, which can arise in obesity, 
especially in the presence of metabolic problems and other 
comorbidities, might hasten the formation of sarcopenia in 
obese persons. Therefore, SO can also be seen in middle-
aged and younger people who are obese, frequently as a 
result of acute and chronic illnesses, as well as in people 
who rapidly increase or decrease their body weight after 
receiving weight loss treatment.(19)
	 Following diagnosis, SO staging can be determined 
based on how far the altered skeletal muscle and body 
composition parameter contribute to the comorbidities. 
Functional impairment might be viewed as an exacerbating 
or perpetuating component as well, as it may have a 

Sarcopenia, the decreased skeletal muscle mass combined 
with poor muscular function (15), and obesity, or a high 
body fat percentage, are the two main characteristics of SO. 
It is necessary to view SO as a distinct clinical condition that 
goes beyond simple sarcopenia or obesity. This is because 
there are two factors at play: 1) a pathogenic, bidirectional 
interaction between the accumulation of body fat mass and 

Sarcopenic Obesity and 
Diagnostic Criteria
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negative independent impact on maintaining or recovering 
an appropriate body composition and function, even if it 
is primarily a consequence of SO with a strong negative 
prognostic value.
	 The goal of the suggested staging is to stratify the 
patients according to their clinical severity and increased 
likelihood of unfavorable outcomes, necessitating more 
intensive care and monitoring. SO definition and diagnostic 
criteria, including the staging currently solely dependent 
on the advice of clinical experts such as The European 
Society for Clinical Nutrition and Metabolism (ESPEN) 
and The European Association for the Study of Obesity 
(EASO) to determine the impact of functional measures 
on clinical outcomes in SO patients.(20) The modifications 
in the diagnostic criteria for obesity and sarcopenia affect 
the criteria for SO. Based on ESPEN and EASO consensus 
statement 2022, SO can be diagnosed in two steps: 1) 
Skeletal muscle functional parameters: assessed from muscle 
strength, knee extensor strength, or chair-stand test. The cut-
off points need to be validated according to sex, ethnicity 
and age stratum. When low skeletal muscle functional 
parameters are detected, the diagnostic algorithm will 
continue to step two, the assessment of body composition; 
2) Body composition: assessed using dual-energy X-ray 
absorptiometry (DXA), or bioelectrical impedance analysis 
(BIA) as the second choice. Computerized tomography 
(CT) should be used when possible (e.g., when the patient 
have some condition that requires CT scan, then this can be 
perfoemed at once).(20) SO (stage 1) will be defined when 
both muscle functional and body compositions are out of 
normal range. When at least one complication detected, SO 
will be defined as stage 2.
	 Prior to 2010, the primary criterion for diagnosing 
SO was the combination of obesity and muscular mass. 
DXA and appendicular skeletal muscle divided by height in 
meters squared (ASM/ht2) are used to diagnosis SO, defined 
when the relative skeletal muscle index is low, compared 
to the average value of young individuals, plus an increase 
in body fat percentage more than 60% compared to the 
population with same age.(21) The body fat and fat removal 
content of the human body were indirectly measured using 
anthropometric measures and bioimpedance analysis (BIA).
(22) The body muscle mass and fat mass were then calculated 
to define SO, which is defined as having a body fat content 
that is 60% higher than the population level and a muscle 
mass that is 60% lower. However, the diagnosis of SO now 
includes the comprehensive evaluation of muscle mass, 
muscle strength, and muscle function, and is determined in 
combination with obesity, unlike when European Working 

Group on Sarcopenia in Older People  (EWGSOP) first 
proposed the comprehensive diagnostic criteria and stages 
of sarcopenia in 2010.(23,24) 
	 Overall, it can be concluded that SO defines as the 
co-existence of excess adiposity and low muscle mass/
function, with reference value depend on the sex, ethnicity 
and age factor. Any comorbidities including metabolic and 
cardiovascular will regard as more advanced stage of SO.

Sarcopenic Obesity: 
Molecular Mechanisms

The primary causes of death globally are cardiometabolic 
diseases, which encompass cardiovascular disorders, 
T2DM, and non-alcoholic fatty liver disease (NAFLD). 
Insulin resistance (IR) is a common mechanism linked to 
the diseases (25), and obesity, high calorie consumption, and 
poor levels of physical exercise are the main contributors 
(26). IR together with the other factors are the main core of 
SO pathophysiological. The largest insulin-sensitive tissue, 
skeletal muscle also has the highest postprandial glucose 
need due to an insulin-dependent mechanism. As a result, 
poor insulin signaling is frequently seen in SO.(27)
	 A number of interrelated factors can affect SO 
pathogenesis, for example aging process (which impact 
on visceral and muscle fat accumulation as well as muscle 
mass decreasing), lifestyle, systemic chronic inflammation, 
and myokines dysregulation.(24) The muscular atrophy 
and an increase in body fat seen in subjects with SO lead 
to a lower mitochondrial number and volume, decreased 
baseline metabolic rate, and increased oxidative stress, 
which intensifies the vicious cycle. Compared to either 
sarcopenia or obesity alone, this complex condition carries 
a 2-3 times greater risk of functional impairment.(28)
	 When the fatty acid intake surpasses the skeletal 
muscle's oxidative capability, intramyocellular lipid 
(IMCL) is produced (29), majority from triacylglycerol 
(TAG); however, there are other lipid intermediates as 
well, including diacylglycerol (DAG), sterol esters, long-
chain acetyl coenzyme A, and sphingolipids, which include 
ceramides.(30,31) These lipids interfere with PI3K activation 
and prevent glucose transporter 4 (GLUT4) translocation by 
activating protein kinase C (PKC) and phosphorylating the 
serine of insulin receptor substrate-1 (IRS-1).(32) When 
GLUT4, a membrane transporter that carries glucose from 
the blood into the myocytes, malfunctions, the mitochondria 
oxidize more fatty acids and use less glucose. Elevated intake 
of fatty acids causes the mitochondria's ATP/ADP ratio to 
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rise and the electron transport chain to shorten. Following 
this, there is a decrease in mitochondrial respiration, an 
increase in the production of reactive oxygen species (ROS) 
which is toxic to myocytes, and ultimately the fasten onset 
of sarcopenia. Intermyocellular adipose tissue (IMAT) and 
IMCL also secretes myostatin, chemokine ligand 2 (CCL2), 
tumor necrosis factor (TNF)-α, IL-1β, and IL-6 to induce IR 
and lipotoxicity.(33)
	 Perilipin (PLIN) is a family of proteins that is contained 
in lipid droplets and regulates mitochondrial oxidation and 
skeletal muscle lipid metabolism.(34,35) PLIN is made up 
of PLIN1 through PLIN5, with PLIN2 and PLIN 5 being 
mostly present in muscle tissue.(36,37) In skeletal muscle, 
overexpression of PLIN5 raises the expression of genes 
related to fatty acid oxidation, which mediates peroxisome 
proliferator-activated receptor (PPAR)α and PPARγ 
coactivator 1 alpha (PGC1α).(35) Reduced triacylglycerols 
(TAG) storage is the outcome of PLIN5 ablation, however 
sphingolipids such ceramide and sphingomyelin are 
elevated, which causes IR in the skeletal muscle.(38) Insulin-
stimulated glucose uptake in cultured myocytes is reduced 
due to increased expression of the NLR family pyrin domain 
containing 3 (NLRP3) inflammasome, which is caused by 
the lipid droplet-associated protein PLIN2. These findings 
imply that increasing muscle fat deposition affects glucose 
homeostasis and energy metabolism, resulting in catabolic 
state and skeletal muscle atrophy.(39)
	 Adipocytes accumulate in different organs in addition 
to muscle tissue in SO, lead to the interconnected signaling 
between adipose tissue and skeletal muscle tissue as 
described in Figure 1. Proinflammatory cytokines including 

TNF-α, IL-6, and IL-1 are secreted by hypertrophied 
adipose tissue, which encourages the infiltration of 
inflammatory cells, including macrophages. Macrophages 
control inflammation in adipose tissue and perform 
autophagic tasks, such as transferring cytoplasmic contents 
to lysosomes for degradation and promoting homeostasis 
via mTOR activation, thereby preventing proinflammatory 
M1 macrophage-polarization.(40) About 10% of cells 
in lean participants' adipose tissue stained positive for 
macrophages; while in obese subjects, this number rose to 
as high as 50%.(41) Muscle tissue-infiltrating macrophages 
deliver antigens generated from adipocytes and stimulate 
CD4+ T cells that are specific to those antigens. Additionally, 
M2 to M1 macrophage phenotypes emit proinflammatory 
molecules such TNF-α, IL-1β, IL-6, and monocyte 
chemoattractant protein-1 (MCP-1)/CCL2.(42,43) By 
promoting filament protein proteosomal degradation and 
upregulating apoptosis, these cytokines cause muscle 
atrophy.(44) Reduced physical activity, a low metabolic 
rate, and a myokine shortage brought on by sarcopenia 
all contribute to a proinflammatory response that worsens 
obesity.
	 In states of obesity, serine/threonine kinases such as 
PKC, C-Jun NH2-terminal kinase (JNK), and IκB kinase 
(IKK) become activated due to increased lipid metabolites 
like diacylglycerol (DAG) and ceramides. This leads to 
the phosphorylation of serine/threonine residues on the 
insulin receptor protein and its substrates, disrupting insulin 
signaling.(45) PKC is a family of serine/threonine kinases 
activated by phospholipase C through the hydrolysis of 
membrane phosphoinositides, which are classified into three 

Dysregulated adipokine and cytokine secretion
(↑ leptin, ↓ adiponectin, ↑ TNF-α, ↑ IL-6)   

Pro-inflammatory myokines
(autocrine, paracrine, endocrine effects)

Adipose Tissue Skeletal Muscle Tissue

• Hyperthropy
• Inflammation
• Dysfunction

• Insulin resistance
• ↓ fat oxidation
• IMCL deposition (lipotoxicity, mitochondrial dysfunction, oxidative stress)
• Catabolism
• Inflammation
• Down-regulation of IL-15

Apoptotic adipocyteM2 macrophageM1 macrophageOther immune cellsAdipocyte

Figure 1.	 The core biological pathway mediating the pathophysiology of SO is the strong interconnection between adipose and 
skeletal muscle tissue.(16) (Adapted with permission from Bentham Science Publishers).
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groups: classical PKCs (α, β1, β2, γ), novel PKCs (δ, ε, η, 
θ), and atypical PKCs (ζ, λ/ι). PKCθ is mainly expressed in 
skeletal muscle and endothelium and is activated by elevated 
DAG levels in muscles.(46) In lipid infusion experiments, 
an increase in muscle DAG concentration activates PKCθ, 
which subsequently impairs the phosphorylation of IRS-1, 
interfering the PI3K activation and blocking the uptake of 
glucose via GLUT4, thereby disrupting insulin signaling 
in muscle. These showed an association between IR and 
reduced mitochondrial lipid oxidation in SO.(47)
	 As we grow older, the build-up of fats and their 
metabolites, especially long-chain fatty acids, results in 
lipotoxicity, inflammation-induced ROS generation, and 
endoplasmic reticulum (ER) stress, all of which impair 
mitochondrial function.(47) Further intracellular fatty acid 
ambulation is the consequence of mitochondrial failure, 
which feeds a vicious cycle of lipotoxicity.(48) IκB kinase 
(IKK), c-Jun N-terminal Kinase (JNK), and p38-mitogen-
activated protein kinase (MAPK) are among the stress 
pathways that are activated by an increase in oxidant 
chemicals.(49)
	 Numerous cell types, including leukocytes, adipocytes, 
and myocytes, generate the cytokine IL-6, which has two 
distinct impacts on inflammation.(50) IL-6 is released from 
the skeletal muscle as a myokine when there is an acute 
contraction of the muscles without causing injury.(51) Acute 
rise in IL-6 in healthy individuals correlated with enhanced 
glucose uptake, enhanced insulin sensitivity through classic 
signaling, and elevated fatty acid oxidation in myocytes.
(52) IL-6 in the pancreas increases glucagon-like peptide-1 
(GLP-1) in order to induce beta cells to secrete more insulin.
(53) It also suppresses the TNF-α pathway's feedback and 
generates anti-inflammatory cytokines such IL-10.(49)

	 Through the MAPK and extracellular signal-regulated 
kinase (ERK) pathways, irisin, a PGCα-dependent 
myokine, reduces obesity and IR by inducing higher 
energy expenditure and browning in subcutaneous adipose 
tissues as described in Figure 2.(54-56) Irisin also prevents 
saturated fatty acid-induced apoptosis in pancreatic beta-
cells and promotes beta-cell survival and glucose-stimulated 
insulin production via the PGA pathway.(57) In mice with 
constitutive Rho-associated protein kinase 1 (ROCK1) 
activation in the muscles, low levels of irisin inhibit the 
synthesis of irisin in the muscles, which reduces adipocyte 
browning and impairs insulin sensitivity.(58) The level of 
plasma irisin was found to be negatively correlated with 
fasting glucose levels and positively correlated with muscle 
mass and strength in human studies.(59)
	 One of the adipokines that is released from adipocytes 
that controls appetite and energy expenditure is called 
adiponectin. Adiponectin's serum level falls in obesity. As 
a result, it improves insulin sensitivity by boosting skeletal 
muscle's absorption of glucose and promoting fatty acid 
oxidation via activating the 5′-AMP-activated protein kinase 
(AMPK) signaling pathway.(60) By reducing the release of 
TNF-α and IL-6 and increasing the synthesis of IL-10 and 
IL-1 receptor antagonists by monocytes and macrophages, 
adiponectin also reduces inflammation.(50) On the other 
hand, TNF-α causes skeletal muscle dysfunction by 
compromising mitochondrial biogenesis, oxidative 
capability, and adiponectin signaling. To summarize, 
adiponectin has been found to have a negative correlation 
with obesity and to protect against inflammation and lipid 
accumulation in skeletal muscle. However, more study is 
required to fully understand its therapeutic implications, 
especially for those with SO.

Aging
physicval activity

Obesity
weight gain

Inflammation
Fatty infiltration

Insulin resistance
Inflammation

Total/Visceral fat

irisin

Energy expenditure

Myostatin?

Leptin resistance
Lipid oxidation Macrophage

recruitment

UCP 1

Muscle cell
differentiation

and grow

↑ FFA 
↓ Adiponectin
↑ Leptin
↑ TNF-alpha
↑ IL-6
↑ MCP-1
 

Sarcopenia
Muscle loss and weakness

↑ White

↓ Brite

Figure 2. Cross talk between adipocyte and 
myocyte in older age: a mechanism leading 
to SO. The main steps are given in bold.
(54) (Adapted with permission from Wolter 
Kluwer Health).
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	 A number of clinical studies showed the correlation 
between SO and metabolic syndrome (MetS).(61-63) 
Nonetheless, SO was linked to MetS in an Australian 
study evaluating older men; with obesity alone to be 
more predictive of MetS than the sarcopenia assessed by 
appendicular lean mass (ALM), grip strength, or gait speed.
(64) IR, the primary feature of NAFLD, is seen in the adipose 
tissue, skeletal muscle, and liver of SO.(65) Hepatocytes' 
insulin signaling appears to be compromised by SO, leading 
to a rise in de novo hepatic lipogenesis and a decrease in 
hepatic β-oxidation.(65) Additionally, obesity contributes 
to the buildup of lipids in the liver, which exacerbates 
hepatocyte insulin resistance.(65) Hepatic steatosis and 
obesity were elevated in genetic animal models of muscle-
specific IR by deleting the insulin receptor tyrosine kinase 
(IRTK) or GLUT4 genes.(46,66.67)

Mechanisms Underlying 
Metabolic Syndrome-related Sarcopenia

Ageing initiate SO which increases the risks of metabolic 
impairment and death.(68) Elderly’s quality of life (QoL) 
is negatively impacted by sarcopenia and the comorbidities, 
which can lead to frailty, dependency, and a rise in 
mortality rates.(68-72) Adipocytes in the adipose tissue 
increase due to hypertrophy and hyperplasia in obesity 
and MetS. Activated pro-inflammatory macrophages and 
other immune cells also penetrate the tissue. This modified 
adipose tissue's cells are characterized by a dysregulated 
production of leptin and adiponectin, two adipokines that 
cause detrimental effects on tissues like the pancreas, liver, 
hypothalamus, and skeletal muscle, as well as an increased 
production of circulating proinflammatory molecules.
(73,74) Modifications in adipokine secretion can lead to 
increased food intake, a reduction in energy expenditure 
via hypothalamic effects, and a decrease in muscle insulin 
sensitivity. Adipose tissue can produce various substances, 
including TNF-α, MCP-1, IL-6, and C-reactive protein 
(CRP), which can affect insulin resistance and the release of 
anabolic hormones like growth hormone (GH) and insulin. 
These substances can cause SO.(75)
	 Increased levels of CRP and IL-6 are linked to a 
two-to three-fold increased risk of developing sarcopenia 
and losing more than 40% of grip strength. Moreover, 
lipocalin-2, a cytokine generated from adipose tissue that is 
essential for controlling lipid metabolism, may be a viable 
option for controlling the quantity of adipose tissue in the 
context of persistent inflammation and insulin resistance. It 

is unclear, nevertheless, if lipocalin-2 levels rise with aging 
normally and are enhanced even more in MetS-related 
sarcopenia.(76) Furthermore, the release of plasminogen 
activator inhibitor-1 (PAI-1), which is primarily obtained 
from visceral fat and derived from adipocytes, into the 
circulation occurs concurrently with an increase in fat mass. 
It is an essential adipokine that has detrimental effects 
on vascular biology and physiological metabolism. IR, 
osteoporosis, and excess glucocorticoid-induced sarcopenia 
have all been linked to PAI-1 in mouse models. The MetS 
is linked to the fibrinolisis abnormalities caused by PAI-
1, which can result in dysregulated vascular clotting, 
endothelial dysfuction, and metabolic abnormalities that 
can cause cardiovascular disease. Other clinical conditions 
like cancer and non-alcoholic hepatic steatosis (NASH) are 
linked to PAI-1. As a result, it has been suggested that this 
could serve as a study target for potential therapeutic drugs 
or a biomarker of inflammatory activity in SO.(77)
	 Numerous proteins are produced when muscles 
contract because the skeletal tissue alters the pattern of 
protein release that is set during periods of inactivity. 
Myokines which is expresses, manufactures, and secretes 
from skeletal muscle are essential for physical activity, 
energy expenditure, and glucose elimination in autocrine, 
paracrine, or endocrine manner. They also aid in the 
adaptation to mechanical, neurological, and humoral 
stimuli.(78) Additionally, myokines increase inflammation 
in adipose tissue and/or cause long-term low-grade systemic 
inflammation. This creates a detrimental vicious cycle that 
maintains inflammation in skeletal muscle and adipose tissue, 
which in turn promotes and exacerbates the development 
of sarcopenia.(79) Obesity and IR have been linked to 
elevated production of myostatin (MSTN), a secreted 
anabolic inhibitor of muscle growth and development. In 
order to cause atrophy, MSTN enhances the activity of the 
ubiquitin–proteasome system and negatively controls the 
Akt pathway, which stimulates protein synthesis.(80) IL-6 
levels rose in response to exercise. It affects the immune 
system, adipose tissue, and the liver, IL-6 is a significant 
factor in metabolism. Furthermore, IL-6 may promote 
lipolysis and IL-6 generated from adipocytes may cause 
insulin resistance in muscle.(81) Conversely, skeletal muscle 
produces the myokine IL-15, which has anabolic effects on 
muscle. It also contributes to the decrease in the mass of 
adipose tissue.(82-84) The co-occurrence of obesity and 
sarcopenia in older individuals may compound their impact 
on mortality and cardiovascular risk, potentially leading to 
poorer illness and mortality outcomes for older persons with 
an obese and sarcopenic body composition.(54,85-88)
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Sarcopenic Obesity: 
A Gut Microbiota Perspective 

Age-related systemic chronic inflammation, commonly 
known as inflammaging can result in decreased muscular 
function and elevated proinflammatory cytokines. 
Inflammaging usually accompanied with increasing level of 
reactive oxygen species (ROS) which triggers the nuclear 
factor kappaB (NF-κB) signaling pathway and initiate the 
release of IL-6 and TNF-α.(89) Obesity on the other side 
also contribute the similar mechanism, and SO indeed 
have a worse prognostic in term of oxidative stress and 
inflammation. 
	 Dysbiosis of the gut microbiota is connected to the 
degree of inflammation (90), lifestyle, and antibiotics 
exposures. Non-obese elderly usually have a better 
metabolic health since their microbial diversity higher 
compare to obese population.(89) In addition, many studies 
indicate that dysbiosis plays a very important role in the 
metabolic pathogenesis, especially among the elderly, by 
demonstrating characteristic changes in gut microbiota.(91)
Gut microbiota plays many roles not only in endocrine and 
immune, but also neuronal organs.(92) Higher inflammation 
in obese elderly can lead to increased intestinal permeability 
and loosen of the tight junction in the gut, which leads to 
bacterial translocation and endotoxemia, reduced beneficial 
bacterial diversity including species of Bifidobacterium, 
Lactobacillus, Akkermansia, Fecalibacterium, 
Eubacterium, Roseburia, Ruminococcus, and Blautia 
while increasing opportunistic bacterias including 
including Ruminococcus, Enterobacter, Enterococcus, 
and Clostridium.(93,94) The imbalance of gut population 
result in reduced short chain fatty acids (SCFA) mainly 
propionate, butyrate, and acetate production lead to higher 
pro-inflammatory cytokines production, insulin signaling 
impairment, and systemic inflammation.(91) A significant 
reduction in the proportion of Lactobacilli, Bacteroides/
Prevotella, and Faecalibacterium prausnitzii and an 
increase in the proportion of Ruminococcus, Atopobium, 
and Enterobacteriacae was also observed in older persons 
with high frailty scores.(92)
	 Different macronutrients promote different features 
on the microbiome, nutrition may play a critical role in the 
regulation of the gut microbiota.(94) The gastrointestinal 
tract's bacterial fermentation is thought to be the primary 
mechanism via which the gut microbiota interacts with many 
gut–brain communication pathways to produce SCFAs from 
dietary fiber.(95,96) Furthermore, given that dietary protein 

has anabolic effects on skeletal muscle, increasing protein 
intake above the recommended dietary allowance (RDA) of 
0.8 g/kg/day is thought to be a useful strategy to combat 
the progressive loss of muscle mass and supressing food 
appetite to prevent obesity.(97)
	 GPCRs, or G protein-coupled receptors, are found 
in the L- and G-cells of the colon and small intestine, 
respectively. These receptors use amino acid sensing to 
modulate the secretion of peptide YY (PYY) and GLP-1, 
which inhibits the regulation of food intake in the gut–brain 
axis.(98-100) Cholecystokinin (CCK) release, which is 
induced by protein ingestion, also contributes to increased 
satiety.(101) These effects, which have been demonstrated 
in studies in comparison to dietary fat and carbohydrate 
consumption (101), may be explained by the control of 
ghrelin and leptin secretion (102-105). It is noteworthy that 
amino acid composition and, in particular, essential amino 
acids (i.e., leucine) may influence appetite-induced reactions 
triggered by communications between the gut microbiota 
and dietary protein.(106,107) Somehow, concerns have 
been expressed about how dietary proteins affect gut flora 
and about the potential health implications of their bioactive 
byproducts.(108)	
	 The regulation of metabolic activities, such as the 
metabolism of nutrients and amino acids, is also significantly 
influenced by the gut microbiota.(109,110) Changes 
in dietary patterns can lead to alterations in microbial 
composition within 24 hours, although for significant 
changes will need a long-term adherence.(111) There is 
a correlation between higher medication use and a higher 
incidence of sarcopenia and physical frailty. This correlation 
may be partially accounted for by the possible influence of 
polypharmacy on the composition of the microbiota.(112) 
Indeed, through effects on the mTOR signaling pathway, a 
main proponent of muscle protein synthesis (MPS) (113), 
significant changes in the microbiota of healthy and frail 
older persons may help explain in part the emergence of 
frailty and sarcopenia (114). Proinflammatory responses in 
the microbiome have also been proposed as a modulator of 
dysfunctional musculoskeletal health.(115) Aging-related 
inflammatory reactions can lead to changes in microbiota that 
are impacted by infections, undernourishment, and a poorer 
standard of living, ultimately resulting in intestinal mucosa 
permeability.(116,117) Dysbiosis, or changed gut microbial 
composition, is triggered by intestinal permeability, which 
also raises the levels of proinflammatory cytokines including 
IL-6 and TNF-α.(118,119)
	 The majority of proteins are effectively broken down 
and absorbed in the small intestine by enterocyte-used 
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pancreatic enzymes and peptidases; nevertheless, about 
10% of proteins that go through the small intestine could 
not be fully digested.(120) 
	 Amino acids are not absorbed by colonocytes as 
effectively when they go to the large intestine for additional 
proteolysis by the colonic microbiota, and certain metabolites 
may be utilized for waste or metabolic products.(121,122) 
Bacterial proteases and peptidases hydrolyze endogenous 
and dietary proteins into peptides and amino acids, resulting 
in a longer transit time and a higher concentration of 
microbiota in the large intestine than in the small.(123) 
Large volumes of indigestible products are produced by 
the undigested proteins and peptides that enter the colon, 
which also affect the composition and production of the gut 
microbiota.(121,124,125) This is because an increase in 
protein consumption results in an increase in the amount of 
proteins that reach the colon. This leads to the production of 
a wide variety of bacterial metabolites in the gastrointestinal 
tract, such as hydrogen sulfide, branched-chain fatty 
acids (BCFAs), SCFAs, polyamines, ammonia, methane, 
aromatic compounds, nitric oxide, tyramine, tryptamine, 
phenethylamine,  serotonin,  and  others.(122,126,127) 
Certain metabolic  byproducts  are  harmful  to  metabolic  
health and have been linked to a number of disorders, 
including inflammatory bowel disease and colorectal cancer, 
as well as chronic inflammation. Nevertheless, considering 
the lack of long-term experimental trials on high-protein 
diets  and  the  gut  microbiome  and  their  complex 
connections, there is currently no causal association in 
humans.(128,129)
	 It's been proposed that the balance of amino acids 
and the sources of protein could affect the diversity of gut 
microbes. For example, higher levels of Bifidobacterium, 
Ruminococcus bromii, Lactobacillus, and Roseburia have 
been linked to plant proteins (130), whereas animal proteins 
are largely home to Bacteroides, Alistipes, Bilophila, 
and Clostridium perfrigens (131). Soy protein intake 
has been linked to higher numbers of Bacteroidetes and 
Bifidobacterium as well as lower serum lipopolysaccharide 
(LPS) levels in comparison to consumption of meat, dairy, 
and casein protein.(131,132) Consuming soy protein has 
also been connected to higher levels of Bifidobacteria 
and Lactobacilli, which are associated with reduced diet-
induced obesity and enhanced insulin sensitivity.(131,132) 
Similarly, after consuming soybean, mungbean, and 
buckwheat proteins, studies have shown increased bile-
acid transformation, GLP-1 release, increased levels of 
Lactobacillus and Bifidobacterium, and decreased levels of 
Firmicutes.(133,134)

	 Additionally, mice treated with seafood protein 
showed lower Proteobacteria (Helicobacter) and higher 
SCFA content, which is associated with elevated taurine 
levels.(135,136) Elevated consumption of pea protein has 
been linked to increased synthesis of Bifidobacterium, 
Lactobacillus, and SCFA. Pea protein also has the effect 
of suppressing the secretion of inflammatory cytokines, 
such as TNF-α and IL-6, and enhancing the expression 
of IL-10 and glucose homeostasis.(137-140) On the other 
hand, because red meat contains higher concentrations 
of Bacteroides and Fusobacterium and lower levels of 
Lactobacillus and Roseburia, all of which are associated 
with a decreased ability to produce an anti-inflammatory 
response and a higher risk of T2DM, heterocyclic amines 
and glycan derived from red meat may, on the other hand, 
increase inflammation in the gut.(141-143) That being 
said, trimethylamine oxide (TMAO), which is produced 
during the metabolism of L-carnitine found in red meat, 
has been linked to a higher risk of atherosclerosis (144) 
and obesity (145). This may not be in line with research, 
though, which shows that eating seafood and fish products, 
which are believed to be cardio-protective, raises circulation 
TMAO levels in comparison to eggs and red meat proteins.
(146,147) Furthermore, a high-mix whey-beef protein 
supplement administered to endurance athletes for 70 
days resulted in an increase in Bacteroidetes species and a 
decrease in Roseburia, Bifidobacterium longum, and Blautia 
as compared to the control group that received maltodextrin.
(136) Although there are known positive and negative 
effects of eating protein, it is still unclear how amino acids 
affect the gut microbiota, which is essential to the metabolic 
human phenotype and depends on protein digestion and 
absorption.(148)
	 During colonic bacterial fermentation, non-digestible 
carbohydrates (dietary fiber) are the main source of 
SCFA synthesis. These fermentation products are roughly 
divided into three categories: soluble (pectin, guar gum, 
psyllium, inulin) and insoluble (cellulose, hemicellulose, 
lignin) fiber.(149) The fermented products also contain 
butyrate, propionate, and acetate.(150) It is believed that 
the recommended daily allowance of dietary fiber varies by 
nation. For instance, the recommended daily allowance in 
the United Kingdom is 30 g, however in Australia, it is 28 
g for women and 38 g for males. Nonetheless, the majority 
of people in both nations do not consume the recommended 
amounts of fiber.(151,152) Dietary fiber has been shown to 
have a variety of metabolic effects (153), such as increased 
fat oxidation, insulin sensitivity, and decreased systemic 
inflammation through the regulation of cytokine production, 
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particularly IL-18 (154-157). A recent review examined the 
growing impact of SCFAs on the metabolism and function 
of skeletal muscles.(158) Furthermore, pigs with higher 
leucine levels also had higher concentrations of butyrate and 
propionate, which show increased Actinobacteria species 
abundance and body-fat reduction. This suggests that the 
microbiome may have a favorable function in metabolic 
health by being essential for mTOR activation and leucine 
metabolism in intestinal epithelial cells. Likewise, through 
modulating GLP-1, PYY, and serotonin from the intestinal 
enteroendocrine L cells, amino acids including tryptophan, 
alanine, and phenylalanine may likewise affect satiety and 
gut motility.(159-165) In a number of tissues, SCFAs may 
function as GPCR substrates, promoting the release of GLP-
1 and PYY, postponing stomach emptying, and lowering 
hunger and food intake.(161,166,167) Propionate, on the 
other hand, has been demonstrated to reduce reward-based 
eating through striatal pathways.(168) These pathways are 
connected to the ingestion of hyperpalatable foods, which 
are high in calories and associated with circumstances that 
promote obesity. Because increased adiposity and anabolic 
resistance are precursors to SO, the strong anabolic effects 
and partially appetite-induced responses of SCFAs and 
amino acids, especially BCAAs, may therefore lower 
the risk of anabolic resistance concurrent with increased 
adiposity.(169) The availability of complex carbohydrates 
may reduce protein fermentation and increase the amount of 
nitrogenous substrates meant to support muscle anabolism. 
Knowing this, a recommendation on protein, carbohydrate 
and fiber source as well as the ratio for skeletal-muscle and 
metabolic health to modulate an appropriate gut microbial 
population is needed.(170) Therefore, gut microbiota has 
been indicated as a prospect target to modulate lean tissue 
mass, and metabolic improvement.(92)

Sarcopenic Obesity: Treatment Strategy

The cornerstones of treating SO include lifestyle 
modifications including calorie restriction (CR) and 
exercise. Nonetheless, deliberate weight loss in older 
individuals improves morbidity and physical function (171); 
few treatment trials explicitly address SO (172). After doing 
a meta-analysis of randomized trials involving persons over 
55 who were obese and had follow-up periods longer than 
four years, researchers found that there was a 16% decrease 
in mortality (95% CI: 0.71–0.99). Medicare does for weight 
reduction therapy in the United States of America (171), but 
no significant societies list targeted therapies for SO. The 

study of Dennis Villareal most closely matches those with SO 
who exhibit physical fragility along with obesity.(173,174) 
Exercise alone or weight loss alone both improved physical 
function in this patient group; however, regular exercise 
in addition to weight loss improved physical function and 
lessened frailty more than either intervention alone.(173) 
Furthermore, according to a different study, the best way 
to improve the functional status of obese persons 65 years 
of age and older was to lose weight and mix resistance and 
aerobic exercise.(173) In a study assessing four groups 
of SO patients based on various exercise interventions 
(aerobic, resistance, combined aerobic and resistance), 
as well as controls who were not allowed to exercise, and 
found that the resistance training group showed the biggest 
gains in strength.(175)
	 The only effective technique found to treat sarcopenia 
is exercise, nutritional and medicinal interventions. Through 
a complex exchange of myokines and osteokines signaling 
between muscle and bone, exercise was found to restore 
mitochondrial homeostasis and decrease inflammatory 
responses, in contrast to nutraceutical and pharmacological 
therapies that exhibited mixed outcomes in alleviating 
sarcopenia. Some studies tried the application of stem 
cells and the secretome, due to their capacity to modulate 
the immune system and restore mitochondria, as potential 
treatments that can treat a wider range of patients than 
exercise alone, as exercise has limited benefits for immobile 
patients.(176)
	 Training exercises are shown to be the most effective 
intervention for alleviating sarcopenia, based on the results 
of current and/or finished research investigations. Only trials 
incorporating physical activity interventions, regardless of 
whether the exercise was resistance, anaerobic, or aerobic, 
showed a statistically significant increase in muscular 
strength and performance out of the 34 total studies listed. 
Conversely, when used in conjunction with an exercise 
regimen, pharmaceuticals and nutraceuticals did not 
demonstrate a positive synergistic effect or prove to be as 
beneficial.(176)
	 Furthermore, it has been demonstrated that exercise-
induced mechanical loading causes osteocyte cell line 
production of insulin-like growth factor (IGF-1), vascular 
endothelial growth factor (VEGF), and hepatocyte growth 
factor, all of which may have functions in controlling 
muscle growth.(177,178) Crucially, exercise also stimulates 
the release of osteocalcin (OCN), a hormone derived from 
osteoblasts that has been demonstrated to help mice adapt 
to exercise.(179) Lastly, it was discovered that older adults 
who regularly exercised also showed increased expression of 
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genes involved in mitochondrial biogenesis, including PGC-
1, nuclear respiratory factor 1 (NRF-1), and mitochondrial 
transcription factor A (TFAM), as well as increased activity 
of mitochondrial oxidative enzymes.(180) These findings 
suggest that physical training can improve and even restore 
mitochondrial function and homeostasis by directly or 
indirectly stimulating mitochondrial biogenesis.(181)
	 Sarcopenia and frailty may benefit from a variety 
of nutritional therapies.(182) The three primary dietary 
therapies for SO are protein consumption, CR, and 
micronutrient supplementation. It is mentioned that the 
main recommendations for dietary therapy for SO at 
this time are expert opinions because to the absence of 
appropriate randomized clinical studies (RCTs). A suitable 
weight loss objective should be less than 5–8% of the 
starting body weight. CR is intended to cause changes in 
body composition in addition to weight loss.(183) Acute CR 
is not advised since it may increase proteolysis and have a 
detrimental effect on the synthesis of muscle proteins, which 
would further reduce muscle mass. On the other hand, long-
term CR may promote rather than inhibit muscle protein 
synthesis.(184) 
	 Sarcopenia brought on by weight reduction can 
be avoided with a higher protein diet. Based on current 
research, a young, healthy person should consume 1 g/kg of 
protein on average per day. However, because of anabolic 
resistance, older individuals should consume more protein 
to support muscle protein synthesis. Thus, it is advised that 
older adults with SO or other conditions requiring a greater 
protein intake consume between 1 and 1.2 g/kg of protein 
daily. It is recommended that persons with acute or chronic 
disorders associated with an imbalanced body composition 
consume 1.2–1.5 g/kg of protein each day to preserve 
the lean mass and providing the essential amino acids for 
immune system like leucine in whey protein.(185,186) 
Combining high protein intake with exercise also have a 
positive impact on inflammatory markers, body weight, 
body fat trunk, and waist circumference although some data 
were still controversial.(183,187)
	 Major RCTs in obese non-sarcopenic women have 
indicated that CR (500 kcal deficit) combined with protein 
consumption can successfully reduce body fat and enhance 
physical function (188,189) and will deliver more benefit, 
since obese older adults tend to have a blunted anabolic 
response (183). Therefore, resistance training in conjunction 
with protein intake is still more advantageous for improving 
mobility and strength both for SO or healthy elderly.(190)
	 Although the effects of vitamin D supplements 
on patients with SO have not been well investigated, a 

number of studies have linked vitamin D insufficiency to 
decreased muscle strength, increased body instability, falls, 
and impairment in the elderly population.(191) Therefore, 
increasing vitamin D consumption may be important to 
minimize the negative effects of weight loss.(192,193) 
Furthermore, research has demonstrated that vitamin 
D can control bioactive metabolites, which enhances 
muscular function.(194) Because the free metabolite of 
25-hydroxyvitamin D3 is more strongly correlated with 
body fat than with muscle gene expression, a study has 
confirmed that the vitamin may have an indirect effect on 
muscle function.(192)
	 Oxidative stress is one of the main mechanism 
underlying SO, which impact mitochondrial dysfunction 
resulting in increased ROS production. ER stress can be 
increased due to higher ROS, lead to anabolic/catabolic 
pathway imbalance in skeletal muscle. ROS can damage 
mitochondrial proteins, reduce ATP generation, block the 
mammalian target of rapamycin (mTOR) pathway and 
subsequent down-regulation of protein synthesis, finally 
induce muscle waste and sarcopenia. On the catabolic 
side, through multiple mechanisms ROS also activates 
autophagy, induce protein breakdown.(195) Consuming 
antioxidants may potentially counteract ROS action and 
may help to avoid sarcopenia.(196,197) Some data also 
showed that supplementing with fish oil may enhance 
athletic performance.(198)
	 Multimodal interventions, which incorporate physical 
exercise, nutritional support, and various other strategies, 
appear to be the most logical approach for preventing and 
reversing these conditions. Recent clinical trials are adopting 
these comprehensive methods (199,200). An ambitious 
multicenter European experiment called "Sarcopenia 
and Physical frailty IN older people: multi-component 
Treatment strategies" (SPRINTT) aims to demonstrate the 
effectiveness of multimodal therapies in frail, sarcopenic 
patients.(18) Figure 3 showed the summarized treatment 
strategies that might be able to eradicate SO.

Conclusion

The extreme phenotype of SO, which is the simultaneous 
existence of obesity and sarcopenia in the same person, 
is the result of two factors coming together: an aging 
population that is occurring at a rapid pace and an increase 
in obesity rates. Due to its correlation with a higher risk 
of death, hospitalization, cardiometabolic dysregulation, 
impairment of QoL, and disability, SO places a significant 
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Figure 3. Treatment strategy for SO 
including exercise, calorie restriction 
and nutrition management. Exercise 
is the most impactful strategy to increase 
myokines via induction of white adipose 
tissue browning, mitochondrial biogenesis, 
increasing osteocytes cell line, and 
osteocalcin from osteoblast. Myokines will 
promote muscle cells differentiation and 
grow, and prevent sarcopenia. 

burden on people, communities, and health care systems. 
Given the significant harm that SO causes, researchers and 
physicians find that timely diagnosis, efficient prevention, 
and effective treatment are of utmost importance. According 
on research on SO conducted thus far, older adults who fall 
into this body composition group are more likely to have 
greater levels of cardiovascular risk factors and to die 
younger than older adults who do not have sarcopenia or 
obesity. The pathophysiology of SO is multifactorial, pri-
marily involving IR and chronic inflammation, but also 
including the interaction of these and other variables. The 
scientific community should work to develop a broadly 
applicable definition for this distinct phenotype, incorporate 
trustworthy body composition assessment methods into 
standard clinical practice, concentrate on patient-centered 
outcomes like physical function and quality of life, 
investigate the ideal features of dietary interventions, and 
ultimately ascertain the ideal frequency, intensity, and 
duration of aerobic and resistance training, the two main 
physical activity components of SO treatment together with 
adequate supplementation of vitamin D and antioxidant. 
Therefore, maintaining muscle mass and strength as well as 
preventing obesity should be the key goals of initiatives to 
support healthy aging. 
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