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Abstract

igh in polyphenols diet has been known to protect human against chronic metabolic diseases including cancer,

diabetes, neurological and cardiovascular disorders. Resveratrol (RSV) is a natural polyphenol that presents in fruits,

vegetables, and nuts. The polyphenols content of RSV possesses anti-inflammatory, antioxidant, immunomodulatory,
and anticancer properties by influencing the nuclear factor-kappaB (NF-«kB), p53, adenosine monophosphate-activated
protein kinase (AMPK), mammalian target of rapamycin (mTOR), Janus kinase 2/signal transducer and activator of
transcription 3 (JAK2/STAT3) pathways, enzymatic antioxidants expressions, and the levels of microRNAs. Therefore, this
review article will focus on the potential of RSV in improving aging and metabolic diseases, which mostly induced by low-
chronic inflammation and oxidative stress. RSV is also known as calorie restriction (CR)-mimetics to activate sirtuins family
which improve mitochondrial function, repair DNA and genomic stability and reduce inflammation thus become a promising
substance to extend health span and longevity. RSV can be useful as a supplement to prevent aging-related diseases, with
a dose range between 250—-1,000 mg depending on the intended health benefit and individual factors. More clinical data is
needed to determine the impact of RSV metabolites and the relationship between dose, concentration, and effect, particularly
in the context of chronic illness.
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characterized by their multiple aromatic rings with hydroxyl

Introduction

Fruits and vegetables are rich in bioactive compounds
known as polyphenols, which contribute to their distinctive
colors, flavors, and medicinal properties.(1) Polyphenols
are categorized based on their chemical structures into two
main groups: nonflavonoids, which include phenolic acids,
stilbenoids, and phenolic amides, and flavonoids, which
encompass flavones, flavonols, isoflavones, neoflavonoids,
chalcones,

anthocyanidins, and proanthocyanidins.(2)

Predominantly, these substances are plant metabolites
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groups.(3) They were divided into distinct classes based
on their chemical structures. In the small intestine, some,
but not all, polyphenols are absorbed after gastrointestinal
digestion, while unabsorbed polyphenols will accumulate
in the large intestine, where they are metabolized by the
gut microbiota. Digestive enzymes must first hydrolyze
unabsorbed polyphenols such as glycosides before epithelial
cells can absorb it with high lipid concentrations.(4)

In phase I and phase II enzymatic processes in the
liver and enterocytes, dietary polyphenols are extensively
degraded and/or poorly absorbed.(5) They are then
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extensively biotransformed by the gut microbiota into a
wide range of new chemical structures that are readily
absorbed to reach the systemic circulation.(6) Only less than
5% of the entire polyphenols consumed are absorbed and
reaches the plasma unaltered.(7) Phase I and II metabolites,
along with microbial products, are predominant in plasma,
while the parent molecule is often undetectable by highly
sensitive analytical methods or exists at very low plasma
levels that fail to provide sufficient cellular concentrations
to support overall efficacy.(8) The low bioavailability/high
bioactivity paradox was posited because polyphenols are
unquestionably responsible for numerous biological effects
despite their poor oral bioavailability. Recent study has
demonstrated that metabolites of dietary polyphenols have
notable intrinsic bioactivities, which may account for the
effects of the parent substances.(9)

Many natural compounds possess antioxidant and
anti-inflammatory properties, by acting as reactive oxygen
species (ROS) scavenger, and altering the expression of
several pro-inflammatory genes such as lipoxygenase,
(NOS), and
cytokines.(10) Among those natural compounds, resveratrol

cyclooxygenase, nitric oxide synthases
(RSV) is a natural polyphenol that are naturally present in a
wide variety of plant species such as fruits, vegetables, and
nuts.

RSV has been described as a phytoalexin, an
anti-infectious substance produced in particularly high
concentrations by plants in response to environmental
stressors like ozone exposure, UV radiation, and other
environmental factors, as well as injury, pathogenic-induced
damage, nutrient deficiencies, and temperature fluctuations.
(11,12) Researchers found that coronary artery disease
(CAD) mortality was lower in Southern France than in other
developed nations, despite consuming a diet relatively high
in saturated fat, interest in RSV, especially the trans isomer,
significantly increased in the early 1990s.(13)

RSV is known to be a caloric restriction (CR)-
mimetic. CR has been shown to increase longevity in a
variety of organisms and even delay the onset of late-life
diseases.(14) Autophagy, an evolutionarily conserved
mechanism of lysosomal proteolysis in eukaryotes, is one
of the processes that CR favours. Many drugs and trophic
factors can control autophagy, as well as in response to food
restriction. In addition to giving the starved cell energy
from broken-down self-components, autophagy eliminates
otherwise dangerous proteins, is crucial for the oxidative
stress response, and is involved in immunological response
and endocrine signaling. Studying autophagy in the context
of nutrition is particularly interesting since dietary variables,
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such as polyphenols, might affect the health benefits linked
to autophagy. Somehow, the exact dose of RSV to provide
benefits, especially for chronic illness, is still not known.
This review will focus on the potential and safety of
RSV among many polyphenols as a supplement to improve
metabolic health and prevent aging-related diseases, the
immunomodulatory effects of such dietary polyphenols,
their anti-inflammatory properties, the various pathways
and mechanisms that reduce inflammation, and their role in
protecting against various chronic inflammatory disorders,
thereby contributing to longevity and driving innovation in
the supplement industry. This is a non-structured narrative
review that started with framing a research question, drafting
the review preparatory work, literature searching (Pubmed
and Scopus) with keywords: “resveratrol”; “sirtuin”;
“aging”; “polyphenols”; and “caloric-restriction” within
2014-2024, and evaluation, organizing and presenting the
results, and creating proper illustrations to aid understanding.

The Immunomodulatory and
Anti-Inflammatory Role of RSV as
A Polyphenol

Persistent inflammation has been identified as a significant
contributing factor to a number of human conditions,
including cancer, type 11 diabetes mellitus (T2DM), obesity,
arthritis, neurological illnesses, and cardiovascular diseases
(CVD).(15,16) Numerous studies support the idea that
polyphenols can improve the immune system. For example,
RSV have cardioprotective effects and an influence on
immune cell populations, can alter the generation of
cytokines, and the expression of pro-inflammatory genes
(17), mainly due to its anti-inflammatory properties (18).
Research, both in vitro and in vivo, has shown that RSV
can inhibit cyclooxygenase (COX), deactivate peroxisome
proliferator-activated receptor gamma (PPAR-y), and
enhance endothelial nitric oxide synthase (eNOS) in
rat and mouse macrophages.(17) Similarly, in RAW
(Murine macrophages cell line) 264.7 macrophages,
a RSV analog known as RSVA40 suppresses the pro-
inflammatory cytokines tumor necrosis factor (TNF)-a
and interleukin (IL)-6.(19) RSV has been demonstrated to
decrease the expression of inflammatory mediators such
as prostaglandins and leukotrienes, adhesion molecules
such as intercellular adhesion molecule-1 (ICAM-1) and
vascular cell adhesion molecule-1 (VCAM-1), by inhibiting
inflammatory cytokines such as tumor necrosis factor
(TNF)-a and interleukin (IL)-1.(20) Additionally, it inhibits
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some inflammatory enzymes, such as COX production in
mice, lipoxygenase (LOX) in human endothelial cells,
mitogen-activated protein kinase (MAPK), and inhibitor of
kappa kinase (IKK). Somehow RSV does not block COX
expression directly.(21) Moreover, through the activation
of the sirtuin 1/forkhead box transcription factor 1 (SIRT1/
FOXO1) pathway, RSV helps stabilize adiponectin levels
and improve lipid metabolism.(22)

The consumption of polyphenols is directly linked to
changes in the number and type of particular immune cells.
In male C3H/HeN mice, oral intake of polyphenols from
dates is associated with an increase in T helper 1 (Thl) cells,
natural killer (NK) cells, macrophages, and dendritic cells
(DCs) in the spleen and Peyer's patches.(23) Polyphenols
can increase the population of regulatory T cells (also
known as suppressor T cells or Treg cells) in humans,
which are important in immunological tolerance and
autoimmune regulation.(24) RSV enhances the expression
of Foxp3, a key transcription factor for Treg development
and function, thus may have benefit in autoimmune disease.
(25) Furthermore, flavonoids bind to xenobiotic-responsive
sites in the promoter regions of some genes, such as Foxp3,
increasing their expression and exhibiting an agonistic
impact on the aryl hydrocarbon receptor (AhR).(26)

Cytokines are essential mediator proteins that
facilitate communication within the immune system. Both
pro-inflammatory and anti-inflammatory cytokines can
be produced by lymphocytes, monocytes (classical, non-
classical and intermediate monocytes), macrophages, mast
cells, endothelial cells, fibroblast cells, and stromal cells.
Chemokines are a subset of cytokines with chemotactic
properties. Studies conducted both in vitro and in vivo
demonstrate that polyphenols affect macrophages by
inhibiting key inflammatory response regulators, including
TNF-a, IL-1B, and IL-6.(27)

Polyphenols exert their immunomodulatory effects
through a variety of common mechanisms, one of which
is the modulation of inflammatory cytokines.(28) nuclear
factor-kappaB (NF-kB) is an essential transcription factor
for the expression of cytokines, and cell survival. It
regulates a cellular immune response inflammatory, stress,
proliferative, and apoptotic reactions to many stimuli.(29)
The target genes of NF-«B are pro-inflammatory genes such
as COX-2, vascular endothelial growth factor (VEGF), pro-
inflammatory cytokines (e.g., IL-1, IL-2, IL-6, and TNF-a),
chemokines (e.g., IL-8, macrophage inflammatory protein
(MIP)-1a, and monocyte chemoattractant protein (MCP)-
1), adhesion molecules, immuno-receptors, growth factors,
and other agents involved in invasion and proliferation.(30)
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In normal cells, NF-kB presents in cytoplasm in its dormant
form, non-DNA-binding form. IxB proteins bind to inhibit
NF-kB. IkBs consist of precursors p100 and p105, Bcl-3,
Ik Ba, IkBp, IkBy, and IkBe.(31) IKK phosphorylates [kB
proteins in response to stimuli, causing ubiquitination and
subsequent degradation of the inhibitory proteins. The
degradation of IxB causes the release of NF-kB dimer to the
nucleus to bind and induce the expression of cause specific
genes.(31)

Oxidative stress and protein oxidation are linked to
the increased generation of ROS.(32) Protein oxidations
in turn cause the release of inflammatory molecules and
various inflammatory signals, such as peroxiredoxin 2.(33)
Moreover, an excess of ROS can cause tissue damage,
which may also start the inflammatory responses.(34) Thus,
polyphenols with its traditional antioxidant properties can
disrupt the ROS-inflammation cycle, explaining their
anti-inflammatory properties. The antioxidant properties
of polyphenols are well-known; they scavenge a variety
of ROS. RSV exhibits a protective effect against lipid
peroxidation in cell membranes and DNA damage caused
by ROS and significantly inhibit NF-kB signaling pathway
after cellular exposure to metal-induced radicals.(35)
Therefore, RSV shows a potent anti-inflammatory property
which modulate the immune system.

RSV as CR-mimetics and
Autophagy Aging Inducers

Autophagy is a crucial cellular process that involves
the degradation and recycling of cellular components
through lysosomal pathways. This process is essential for
maintaining cellular homeostasis, especially under stress
conditions, by removing damaged organelles and protein
aggregate. Autophagy is crucial for cellular quality control,
especially under stress conditions like nutrient deprivation.
As we age, the efficiency of autophagy declines, leading
to the accumulation of damaged cellular components. This
decline is associated with various age-related diseases.
(36) RSV induces autophagy through several pathways,
prominently involving the inhibition of the mTOR pathway.
It directly inhibits mTOR by competing with adenosine
triphosphate (ATP), which is necessary for autophagy
induction.(37) In this regard, RSV, either as individual
substances (supplements) or as a component of a diet, may
be a useful therapeutic tool for healthy aging.(38)
Intracellular proteolysis is another critical cellular
process involved in the degradation and recycling of
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cellular components. Recent studies suggest that the
ubiquitin-proteasome system (UPS) and autophagy are not
entirely independent but rather part of a single proteolytic
network. They share similarities in substrate selectivity and
functionally cooperate to maintain cellular homeostasis.
(39) Two primary routes of intracellular proteolysis are
proteasomal and lysosomal degradations.(40) Proteins with
longerhalf-lives often degrade inthe lysosome, whereas those
with short-lived molecules degrade through the proteasomal
system.(41) Molecules subjected to lysosomal degradation
can reach lysosome through autophagy, phagocytosis,
or endocytosis. In yeast, autophagic breakdown happens
during periods of low food availability and serves as a
survival strategy to recycle cellular components. In higher
eukaryotes, however, autophagic proteolysis has grown in
importance since it also breaks down molecules, cellular
aggregates, microbes, and entire organelles that might
otherwise damage the cell. For this reason, autophagy
protects neurons and cardiomyocytes from damage and is
involved in immunity and tumorigenesis.(42)

Autophagy can be regulated by both genetic and
non-genetic factors. Autophagy-related genes (ATG genes)
are involved in the formation of autophagosomes and the
regulation of autophagy in various physiological contexts.
While non-genetic autophagy regulated by transcriptional
networks and post-transcriptional mechanisms, including
the action of transcription factors, micro-RNAs (miRNAs),
and epigenetic regulators.(43)

CR is the only non-genetic autophagy stimulator
proven to increase the longevity of model organisms,
from yeast to mammals. CR is a dietary intervention
characterized by a reduction in 20-50% of calorie intake
without malnutrition.(44) CR helps delay or reduce the risk
of numerous age-related illnesses by protecting biological
processes. The positive effects of CR are driven by several
molecular mechanisms, including modifying energy
metabolism, lowering oxidative stress, improving insulin
sensitivity, reducing chronic inflammation, promoting
autophagy, enhancing neuroendocrine function, and
inducing hormesis. Key molecular signaling pathways
involved in CR's anti-aging impact include SIRT,
G-coactivator-1a, AMP-activated protein kinase (AMPK),
insulin/insulin-like growth factor (IGF), and the mTOR.
These pathways form a highly active interaction network.
Scientists are actively searching for natural or pharmaceutical
CR-mimetics that can replicate the benefits of CR without
reducing food intake, especially for individuals in mid-life
to old age, as strict adherence to a CR diet is challenging for
most people.(45)
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Potential candidates for CR-mimetics include
rapamycin, RSV and other polyphenols, 2-deoxy-D-glucose,
and other glycolytic inhibitors. The mechanism pathways of
these CR-mimetics involve the insulin pathway, activated
AMPK activators, autophagy stimulants, alpha-lipoic acid,
and other antioxidants.(46) CR depletes intracellular acetyl
coenzyme A (AcCoA), which is linked to the deacetylation
of cellular proteins, by reducing cytosolic AcCoA, inhibiting
its biosynthesis, inhibiting acetyltransferase enzymes that
transfer acetyl groups from AcCoA to other molecules, and
stimulating deacetylases that remove acetyl groups from
leucine residues.(47) In vitro and in vivo studies show that
autophagy can be effectively induced by relatively nontoxic
natural compounds that act as AcCoA depleting substances
(e.g., hydroxycitrate), acetyltransferase inhibitors (e.g.,
anacardic acid, curcumin, epigallocatechin-3-gallate,
garcinol, spermidine), or deacetylase activators (e.g.,
nicotinamide, RSV). CR-mimetics can influence the same
molecular pathways often activated by short-term fasting or
long-term CR by inducing autophagy.(48) Furthermore, a
variety of physiological characteristics and circumstances,
such as the organism's metabolism, liver health, comorbid
affect the

bioavailability of dietary polyphenols.(49) The amount of

illnesses, microbiota characteristics, etc.,
polyphenols in food does not directly correlate with their
bioavailability in the body upon oral ingestion; since the
bioavailability of any natural polyphenol varies.(50)

RSV is known to induce autophagy by activating the
SIRT1 protein by activating autophagy-related proteins
like LC3 and (Atg) 5 and 7.(51) The indirect pathway is
predicated on FOXO1 activation, which triggers Rab7
expression and causes maturation of autophagosomes and
endosomes.(52) Furthermore, SIRT1 may activate FOXO3
to trigger Bnip3-mediated autophagy.(53,54) The negative
regulation of the mTOR signaling pathway is one of the
most significant outcomes of SIRT1 activation brought on
by RSV exposure.(51) When taken as a whole, these findings
provide credence to the theory that autophagy control and
senescence-associated secretory phenotype (SASP) have a
close association thus polyphenols that target SASP through
autophagy may have anti-aging properties.(38)

RSV Activates SIRTs as The Regulators of
Metabolism and Healthspan

A careful balance between energy intake, utilization, and
storage is necessary for metabolic management. In excess
nutrition, extra energy is conserved for use when resources
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are limited. These changes in nutrient intake, use, and
storage are governed by a finely tuned regulatory and
evolutionarily conserved program that involves both food
restriction pathways involving AMPK and SIRTs. Classical
food excess signaling pathways involving insulin, IGF1,
and TOR (mTOR in mammals).(55)

The class III histone deacetylase (HDAC)-related
conserved protein family, known as SIRTs, consists of
seven members.(56) Interestingly, SIRTs include a catalytic
domain that binds nicotine adenine dinucleotide” (NAD™).
Depending on the biological process they are involved in,
they may act on distinct substrates. The distinct localization
and functions of SIRTs can be partially explained by the
differences in their length and sequence in the N- and
C-terminal domains.(56) In recent years, an increasing
number of studies have demonstrated their involvement in
several pathologies, including CVDs, neurodegenerative
diseases, muscular disorders, inflammatory and autoimmune
diseases, metabolic disorders, and cancer.(57) Numerous
cellular functions, including metabolism, mitochondrial
homeostasis, autophagy, DNA repair, apoptosis, oxidative/
antioxidative balance, and senescence, are regulated by
SIRTs.(58,59) Furthermore, mounting data supporting the
possible application of SIRT modulators for the treatment
of various diseases.(60)

(SIRT1-SIRT7) that make
up the SIRT family in mammals differ in their targets,

The seven proteins

enzymatic activities, subcellular localizations, and tissue
selectivity. The significance of SIRTs, particularly SIRTI,
in maintaining metabolic homeostasis, preventing age-
related illnesses, and limiting caloric intake (as the sole
physiological intervention that prolongs lifespan) has been
investigated. Consequently, there was a fierce search for
pharmacological or nutraceutical SIRT activators, which
resulted in the discovery of many SIRT activators. Among
these, RSV attracted the most interest.(61) It is believed that
activation of SIRTs is advantageous for neurodegenerative
disorders like Alzheimer's and Parkinson's as well as
metabolic diseases like T2DM and obesity. This is
partly due to the fact that SIRTs increase the activity
of mitochondria, which are powerhouses of the cell, as
well as mitochondrial proteins, which are crucial in the
aforementioned diseases.(62)

First identified in a yeast model (63), silent information
regulator 2 (Sir2) has been demonstrated to control a wide
range of cellular functions, such as the silencing of ribosomal
DNA (rDNA) and telomeric DNA, intracellular signalling
related to cell cycle and senescence, and the regulation of
metabolism through the deacetylation of not only histones
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but also a number of transcription factors and cofactors.(64)
SIRT1 is the mammalian ortholog that is closest to Sir2.
It was first identified as deacetylating histones, but it was
subsequently discovered that it also deacetylates additional
protein.(65) It is involved in many biological processes,
such as DNA repair, cell cycle regulation, apoptosis and
inflammation (66), autophagy and aging (67), and it is
essential for protecting human against a variety of diseases
(68). SIRT1 catalyzes the deacetylation of histone proteins
H1, H3, and H4's acetyl-lysine residues. Additionally, non-
histone substrates such as p53, Ku70, FOXOs, peroxisome
proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1a), peroxisome proliferator-activated receptor
gamma (PPAR-y), and NF-kB are deacetylated by SIRT].
(69,70) Through the acetylation and deacetylation of
these substrates, which changes their transcriptional and
enzymatic activity as well as protein levels, SIRT1 plays a
significant role in the regulation of cellular senescence and
organism lifespan.(71-73)

The p53 was the first non-histone target for SIRT1 to
be identified. It is deacetylated and inhibited in response to
oxidative stress or DNA damage, which impairs apoptosis.
(74,75) Therefore, it was thought that elevated SIRT1
activity might cause tumors, but it appears that the opposite
is true.(76) Reversible acetylation also regulates the activity
of a transcriptional co-regulator that controls mitochondrial
biogenesis and activity, PGC-1a.(77,78) As described
in Figure 1, SIRT1 deacetylates PGC-1a, activates and
triggers downstream processes of mitochondrial genes
expression.(79) Likewise, SIRT1 regulates the acetylation
of transcription factors FOXO, which are crucial modulators
of glucose and lipid metabolism as well as stress reactions.
FOXO transcription factors play a crucial role in regulating
apoptosis. FOXO transcription factors (such as FOXOI,
FOXO03, FOX04, and FOXO6) can directly activate the
expression of several pro-apoptotic genes, including Bcl-2-
interacting mediator of cell death (BIM), p53 upregulated
modulator of apoptosis (PUMA), and Fas ligand (FasL).
These genes encode proteins that promote apoptosis by
triggering mitochondrial outer membrane permeabilization
and activating caspases, which are enzymes that execute cell
death. SIRT1 deacetylates FOXO proteins, enhancing their
ability to induce apoptosis under stress conditions. Under
conditions of oxidative stress or nutrient deprivation, FOXO
proteins are activated and translocate to the nucleus. In the
nucleus, they promote the expression of genes involved in
cell cycle arrest, DNA repair, and apoptosis, helping the cell
to cope with stress or, if damage is too severe, to undergo
apoptosis. It is believed that SIRT1-mediated deacetylation
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Figure 1. The anti-aging activity of SIRT by modulating a wide
range of signal transduction pathways.

adds another level of specificity to phosphorylation-based
regulation by preferentially directing FOXO to specific
targets rather than merely activating or inhibiting it.(62)
In2003, the first SIRT 1-activating compounds (STACs)
were identified, with RSV proving to be the most effective.
This discovery was significant as it showed that SIRTs could
be activated allosterically. Since then, over 14,000 STACs
from various chemical classes, including plant-based
stilbenes (such as RSV), chalcones (such as butein), and
flavones (such as quercetin), have been discovered through
high-throughput screening and medicinal chemistry efforts.
(80) Imidazothiazoles (such as SRT1720), thiazolopyridines
(such as STAC-2), benzimidazoles (such as STAC-5), and
bridging ureas (such as STAC-9) are examples of synthetic
STACs.(81,82) Through a K-type allosteric activation
mechanism, each of these chemical classes lowers the
substrate's Km value to activate SIRTI. It's interesting
to note that recent research showed that natural fatty
acids at the enzyme's amino terminus can trigger SIRT6
deacetylase activity, suggesting that SIRT6 may potentially
be susceptible to in vivo activation by synthetic compounds.
Given that SIRT6 can improve DNA repair, alter cancer
cell metabolism to avoid malignancy, and increase mice
lifetime, this discovery offers an intriguing prospect.(83)
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Rapamycin, a medication that was initially identified
in an Easter Island bacteria, decreases organ transplant
rejection by blocking mTOR. Rapamycin is believed to
increase longevity by simulating diets deficient in key amino
acids like tryptophan or methionine.(84,85) Metformin also
suggested to have longevity effects via an AMPK-activating
chemical derived from the Hellebore buttercup plant beside
become the first-line treatment for T2DM.(86)

Mechanism of SIRT1 Activation by RSV

SIRTs are desirable therapeutic targets due to their significant
role in aging and metabolic control. RSV, a SIRT1 activator,
prolongs life expectancy and protects against insulin
resistance.(87,88) RSV can impact SIRT activation both
direct and indirectly.(89,90) Direct activation and inhibition
of SIRTS and SIRT3 activities may also contribute to
physiological consequences in mammals. Consistent with
the discovery that piceatannol is a strong inhibitor of SIRT2,
the effects on SIRT3 and SIRTS further demonstrate that
RSV is like chemicals that can interact with the conserved
SIRT catalytic core rather than the proposed binding to
the SIRT1-specific N-terminus.(91) In vivo study of RSV
showed an opposite effect in higher concentration by
inhibiting SIRT1 and SIRTS5.(92)

In yeast, gene silencing at the three silent loci requires
Sir2.(93) In addition to gene silencing, Sir2 proteins have
a key role in a variety of functions, including fatty acid
metabolism (94), cell cycle regulation (95), and life span
extension (96). The most well-researched human homolog,
SIRT1, mediates adipogenesis (97), muscle differentiation
(98), transcription regulation (99), p53-dependent activities
(100), protection against axonal degeneration (101), and
prolong life span (102,103).

Nicotinamide was the sole NAD"-like metabolite and
salvage pathway intermediary that inhibit the regulatory
effects on Sir2 enzymes (104) on life span extension (105),
making it the most powerful inhibitor of Sir2 enzymes to date
(106). Although nicotinamide adenine dinucleotide (NADH)
was previously demonstrated to be a competitive inhibitor
of NAD" in vitro (107); the large mm binding constant
for NADH suggests that, in the majority of physiological
circumstances, cellular NADH levels are unlikely to control
Sir2 activity (104). Small compounds including Sirtinol,
splitomicin, and splitomicin analogs were shown to be
Sir2 inhibitors by phenotypic screening. Furthermore, it
was demonstrated that 15 plant phenols, including as RSV,
piceatannol, and quercetin, had SIRT1 activating qualities.
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(102) RSV was the most effective activator of SIRT1 and, to
a lesser extent, of Sir2 among all the small compounds that
were discovered.(102)

SIRTs activation seems to be a more promising
therapeutic strategy, stronger, more targeted, and more
bioavailable substances are available.(91,108) The direct
contact between different SIRT isoforms activator and the
substrate, however, may settle a contentious issue regarding
the potential of SIRT activation.(109) It describes how Sirt
activation against the FdL1 substrate requires the C-terminal
fluorophore (110,111) and how activation can also be
facilitated by other C-terminal extensions, particularly
regular amino acids. RSV activation is consistently seen by
us and others for both complete substrate proteins and longer
peptides without fluorophores.(92,112) According to assay
data (92,111,113) and the observation that RSV exhibits
Sir2-dependent effects in Caenorhabditis elegans that
overlap with but differ from those of Sir2 overexpression
(114), this mechanism also explains how the compound
can activate, not affect, or inhibit a SIRT depending on
the substrate. This sequence dependence implies that each
SIRT/substrate pair separately when examining the effects of
this class of compounds on SIRT-dependent deacetylation.
Current medications only modify the deacetylation of
a small number of particular Sirt substrates. RSV, as an
alternative concept, suggests that the activator and substrate
form a complex in solution, which then acts as an enhanced
substrate.(115)

SIRT1
substrate, even though such activation is independent of

activation needs a fluorophore-containing

peptide sequence. The fluorophore prevents the peptide
from tightly binding to the enzyme when coenzyme like
RSV is not present. When RSV binds to SIRT1, the enzyme
undergoes a conformational shift allowing a stronger
fluorophore binding to the whole peptide substrate. RSV
activation seems to be specific for SIRT1.(116) RSV-like
compounds demonstrate the intriguing potential to create
regulators that solely target particular SIRT/substrate
combinations and show that a number of mammalian SIRT
isoforms can be activated.(117)

Anti-Inflammatory Properties of RSV

Inflammation is one of the body's natural defence
mechanism against infection or injury which is important
in preserving tissue homeostasis under stressful situations.
(118) Inflammation is essential for human health because
of this intricate, strictly controlled process, acts as a
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quick defence to stop possible infections, prevents further
tissue damage, and promotes healing processes.(119) All
inflammatory responses share a basic mechanism, which
generally includes the following steps: 1) The target tissues
are impacted; 2) inflammatory pathways are triggered;
3) inflammatory markers are generated; 4) inflammatory
cells are recruited; and 5) cell-surface pattern receptors
identify harmful stimuli.(120,121) The cardinal signs of
inflammation including pain (dolor), heat (calor), redness
(rubor), swelling (tumor), and ultimately loss of function
(function laesa), are the outcome of this intricate chain of
events.(122)

Inflammation can be classified as acute as the body's
immediate and early response to harmful stimuli, such as
pathogens, damaged cells, or irritants. It typically lasts
for a short period, from a few minutes to a few days; or
chronic, when inflammation is a prolonged inflammatory
response that can last for weeks, months, or even years.
(118) Tissue-resident cells identify infections or damage
and start the acute phase (the ecarly stage of the body's
response to injury or infection) by sending chemical signals
that intensify the local response and recruit other cells.(119)
Acute inflammatory responses are usually characterized
by effective molecular and cellular processes that restore
tissue homeostasis and, consequently, the full resolution of
inflammation.(123) In low-grade inflammation, however,
modifying or extending the inflammatory response's
activation might result in the second stage response, known
as chronic inflammation, which can harm a host more than
the pathogen itself.(124) Recurrent or persistent infections
can cause low-grade inflammation to last throughout life,
and new research suggests that inflammation plays a key
role in the aetiology of a number of chronic illnesses,
such as neurological, cardiovascular, pulmonary, and
metabolic diseases.(125) Additionally, research has linked
inflammation to some cancer types.(119,126)

The foundation of inflammation therapy is the use
of non-steroidal anti-inflammatory medicines (NSAIDs),
which have a limited effectiveness and a number of side
effects such as gastrointestinal tract injury, which can result
from long-term usage of the medication because it inhibits
both enzyme isoforms. NSAIDs are strong COX-1 and
COX-2 inhibitors. COX-1 is constitutively expressed in
many tissues and produces prostaglandins that are involved
in maintaining normal physiological functions, while
COX-2 is primarily induced at sites of inflammation
and produces prostaglandins that mediate pain and
inflammation. A novel anti-inflammatory drugs called coxibs
was the creation of selective COX-2 inhibitors, which are
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selective inhibitors, enhanced the effectiveness of NSAIDs
and reduced the harm they caused to the gastrointestinal
system, but they also raised the risk of hepatotoxicity and
cardiotoxicity.(127)

Phytochemicals found in fruits, vegetables, nuts, and
herbs may have pertinent positive benefits because of their
inherent anti-inflammatory and antioxidant qualities.(128)
Phytochemicals' hermetic qualities trigger adaptive stress
response signaling pathways, which boost cells' resilience
to damage and illness. As a result, natural compounds have
garnered more attention in recent decades as potential
sources of novel anti-inflammatory drugs.(129) RSV is
known to have similar effects to NSAIDs as COX-1 and
COX-2 inhibitors, making it a potential therapeutic agent
for managing inflammatory conditions.(130)

Businesses working on food additives and cosmetics
as well as the pharmaceutical sector shows growing interest
in the use of RSV. RSV became well-known in dermatology
applications as a cosmeceutical to enhance skin health
because of its promising prospects as a topical anti-aging
chemical by downregulating the key transcription factors
involved in photoaging.(131) Furthermore, because of
its purportedly positive effects on human health, RSV
is currently widely available as an over-the-counter
nutraceutical.(132) As a result of this heightened interest in
RSV activity, numerous in vitro and animal studies have been
conducted to find out its positive effects. Numerous studies
have shown that RSV has both preventive and therapeutic
properties in a number of illnesses, such as diabetes, CVDs,
and different forms of cancer.(133) These properties are
connected by their significant anti-inflammatory action.
(132) Additionally, the beneficial biological effects of RSV
were linked to lifetime extension in a number of studies using

NF-xB
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animal models.(134) RSV has a wide range of molecular
targets as a pharmacological agent, and it is believed that its
effects are the consequence of its simultaneous activity on
several targets. RSV typically serves as a strong scavenger
of free radicals (135), and exerts its effects by interacting
with various enzymes across different groups, including
kinases, lipoxygenases, cyclooxygenases, and SIRTs (136).
Figure 2 describes the molecular anti-inflammatory effects
of RSV.(137)

The pathophysiology of hypertension involves
inflammation and oxidative stress in the vascular and renal
tissues. RSV improves endothelial function and arteriolar
remodelling, which has positive cardiovascular effects,
particularly on pulmonary arterial hypertension (PAH).
(138) The most common cause of PAH is inactivating
mutations in the gene encoding for the bone morphogenetic
protein type II receptor (BMPRII) which plays important
roles in embryogenesis, and the homeostasis of adult tissues.
Patients with PAH have lung pressures higher than 25 mm
Hg during the resting state and 30 mm Hg during exercise.
Breathlessness, exhaustion, and chest pain are the primary
signs of this illness.(139,140) In PAH, combination therapy
of anticoagulants, calcium channel blockers, diuretics,
and prostanoids is considered standard care.(141,142) The
pathophysiology of PAH is significantly influenced by
smooth muscle cells (SMCs). Intimal fibrosis results from
SMCs dedifferentiating, proliferating, and secreting fibrous
material into the subendothelial region.(143) Thus, RSV can
support PAH improvement.

Oxidative stress, caused by the accumulation of ROS
in the cellular environment, damages proteins, RNA, and
DNA. Activating the transcription factor nuclear factor

erythroid-related factor 2 (Nrf-2) is one way that cells combat

@ cytokines
) |

 STATs '
STAKE Figure 2. Some of the molecular bases
of RSV anti-inflammatory effects.(137)
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(Adapted with permission from MDPI).
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oxidative stress. Nrf-2 stimulates the transcription of genes
that detoxify ROS and eliminate damaged proteins in order
to increase the overall survival of cells.(144) Therefore, it
is crucial to look for ways to restore Nrf-2 function because
poor Nrf-2 activation causes inflammation and oxidative
stress to be amplified or develop. Animal research has
shown that RSV effectively counteracts pro-inflammatory
cytokines, which can lead to arterial remodelling and the
improvement of endothelial dysfunction. Additionally,
RSV has been shown to reduce hypertension, improve
small artery remodelling, and stop contractile dysfunction
and heart hypertrophy in spontaneously hypertensive
rats (SHR).(145,146) Interstitial immune cell infiltration
is seen in renal tissue of untreated SHR and is linked to
oxidative stress in renal proximal tubular epithelial cells.
Nuclear Nrf-2 was markedly reduced in the untreated SHR.
RSV treatment improved the progression of hypertension
in SHR, decreased oxidative stress in proximal tubular
epithelial cells, decreased the number of inflammatory and
interstitial angiotensin (ANG) II-positive cells in the kidney,
and restored the natural compound activator of Nrf-2. The
restoration of Nrf-2 activity and the production of antioxidant
enzymes are linked to the reduction of oxidative stress.(147)
Glutathione-S-transferase (GST) and superoxide dismutase
(SOD) are two examples of antioxidant enzymes that are
important in defending cells against oxidative damage and
aging.(148) RSV supplementation for an extended period of
time raises SOD and GST levels in the SHR.(149)

Polyphenols including RSV  providing anti-
inflammatory and anti-cancer benefits by trigger cell death
in various cancer types. They alter signaling pathways,
reduce the activity of nucleoside diphosphate kinase B,
and induce apoptosis in bladder, colon, and lung cancer
cells. Numerous biological functions depend on nucleoside
diphosphate kinase B (NME2). The oncogene c-MYC,
which contributes to the development of cancer, is influenced
by NME?2 as a transcription factor.(150) By blocking NF-xB
pathway, polyphenols also prevent cell proliferation and cell
cycle.(151)

Many studies both in vivo and in vitro showed that
polyphenols have been demonstrated to prevent the
growth of malignancies of the mouth, gastrointestinal
system, liver, lung, breast, and skin.(152) However, there
is still much to learn about the molecular mechanisms
behind the polyphenols' chemopreventive effectiveness.
Oppositely, there are significant differences between
polyphenol’s clinical results and health advantages. one
of the main reason is that polyphenols' non-physiological
concentrations are being tested, which may obscure their
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mode of action at therapeutic dosages.(153) However, there
is growing evidence that certain polyphenolic substances
influence the epithelial-mesenchymal transition (EMT),
one of the primary routes involved in the development and
spread of cancer. Cells lose their cell-cell adhesions, cell
polarity, and differentiation characteristics as they undergo
EMT, changing from an epithelial to a mesenchymal state.
(154) The cells become invasive and motile as a result of
these alterations, which enable them to migrate through
the extracellular matrix and reach distant areas.(155)
Flavonoids, ellagic acid, quercetin, silymarins, RSV, and
curcumin are just a few of the polyphenolic chemicals that
have been shown to dramatically reduce metastasis and
invasiveness in a variety of malignancies both in vitro and
in vivo. Therefore, by blocking the EMT signaling pathways
in cancer cells, polyphenolic substances may be able to
stop or reverse the invasion, metastasis, and progression of
cancer.(156)

RSV Improves Mitochondrial Function
and Protects Against Metabolic Disease

Utilizing pharmaceutical dosages of bioactive food
compounds such as nutrients and phytochemicals present in
fruits, vegetables, and spice has become a viable therapeutic
strategy to treat the intricate metabolic dysregulations
These

substances are known as nutraceuticals, and the field is called

associated with aging and chronic diseases.
nutrapharmacology. These chemicals can effectively alter
the oxidative, inflammatory, and apoptotic abnormalities
in chronic illness metabolic pathways, according to
fundamental science publications.(157,158) More than one
decade have passed since the first study revealed RSV's
first in vitro and in vivo proof of cancer chemopreventative
action (159), and since then many studies explore RSV in
different diseases related to aging and metabolism (160,161),
as proposed in Figure 3. The benefits of RSV are closely
linked to its ability to improve mitochondrial function by
activating SIRT1, which increases NAD" levels, promoting
mitochondrial biogenesis and improving energy production.
It also enhances the expression of antioxidant genes, such
as SOD and catalase, which help reduce oxidative stress and
protect mitochondria. By activating pathways like AMPK
and PGC-1a, RSV improves the efficiency of ATP synthesis,
supporting better cellular energy production.(162)
Numerous experimental investigations have shown
that the polyphenol RSV inhibits the development of
fatty liver disease including non-alcoholic steatohepatitis
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(NASH) and non-alcoholic fatty liver disease (NAFLD).
It was assumed that RSV might reverse steatohepatitis,
including hepatic inflammation and fibrosis. RSV treatment,
started
elevations, hepatic enlargement, and TNF-induced protein-3

when early, partially reduced transaminase
protein expression. However, high hepatic triglyceride
levels, histological steatohepatitis, or fibrosis were largely
unaffected by RSV treatment.(163)

The major causes of NAFLD and NASH are obesity
and inflammation. In affluent nations, NASH affects 2—10%
of adults, whereas NAFLD affects 20-33% of individuals.
(164-166) Hepatocellular ballooning and

inflammation accompanying steatosis in NASH, can lead

intralobular

to progressive fibrosis and increase the risk of cirrhosis
and hepatocellular carcinoma.(165) Additionally, NASH
increases the risk of diabetes and ischemic heart disease,
which raises the death rate for these individuals.(167,168)
A Study on Japanese knotweed contains RSV showed a
potential therapy option for NAFLD.(169) It appears that
RSV mimics CR and promotes anti-inflammatory and
antioxidant effects via activating AMPK and SIRT1.(170)
Mitochondria is the primary energy sources of the
cell, which use cellular respiration to convert nutrients
into energy.(171) Numerous illnesses, particularly those
affecting the cardiovascular and metabolic systems, have
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been connected to compromised mitochondrial function.
(172) Reduced mitochondrial oxidative capacity and
ATP synthesis, a lower ratio of oxidative type 1 to type
2 glycolytic type muscle fibers, and, lastly, a decrease in
the expression of genes governing mitochondrial activity
have all been linked to human muscle insulin resistance.
(172) The PGC-1a gene regulates mitochondrial biogenesis
and function, which can help with fiber-type switching in
muscle and adaptive thermogenesis in brown adipose tissue
(BAT). Decreased expression of PGC-1a is reliably linked to
diabetes muscle, characterized by muscle weakness, muscle
mass loss and fatigue as the impact of diabetes in human or
animal studies. A coactivator with pleiotropic properties is
PGC-10.(173,174)

SIRT1 has recently been shown to collaborate
with PGC-lo in regulating the genetic programs for
gluconeogenesis and glycolysis in the liver, thereby aiding
the body's adaptation to CR.(175) Nicotinamide and
O-acetyl-ADP-ribose are produced via the catalysis of
NAD"-dependent protein deacetylation, which is catalyzed
by SIRT1, one of seven mammalian homologs of Sir2.(176)
SIRT1 was first identified as a factor that controls longevity,
apoptosis, and DNA repair, and also helps to convert
nutritional status changes, which it detects through NAD*
levels, into adjustments to cellular metabolism.(175)
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Current Research Trends on RSV and
Future Perspective

Nutraceuticals, such as RSV, are emerging as promising
therapeutic agents for addressing metabolic dysregulations
in aging and chronic diseases. Studies have shown RSV's
potential in treating fatty liver diseases like NAFLD
and NASH by mimicking CR and activating AMPK and
SIRT1 pathways. Additionally, RSV's role in regulating
mitochondrial function and gene expression helps mitigate
muscle insulin resistance and supports overall cellular health,
making it a valuable compound in nutrapharmacology.

Despite of all aforementioned benefits, RSV is still
facing some challenges for optimal clinical application.
Even now, there are some contradictory studies regarding
the effects of RSV on metabolic and age-related diseases.
While many studies highlight its benefits, some research
points to limitations and inconsistencies. Different studies
have shown that RSV's effects can vary significantly
depending on the dosage, duration of treatment, and the
specific condition being treated. For example, while RSV has
been shown to improve insulin sensitivity in some studies,
others have found no significant effect.(177) RSV has low
bioavailability, meaning that it is not easily absorbed and
utilized by the body. This has led to mixed results in clinical
trials, as the effective dose can be difficult to achieve.
Nonetheless, high doses of RSV have been associated with
adverse effects in some studies, including gastrointestinal
issues and interactions with other medications.(178) Studies
focusing on improving RSV's bioavailability determining
the optimal dose for humans are required.(179)

Recent ongoing research on RSV has focused on
enhancing its bioavailability and exploring new therapeutic
applications. Some cutting-edge discoveries and ongoing
trends including its advance formulation, and expanding the
application. Nanoparticle formulations are now developed
for RSV-loaded nanoparticles. It was hoped to improve its
bioavailability and stability. These formulations have shown
enhanced anticancer potency compared to free resveratrol.
(180) Scientists are modifying the structure of RSV to create
derivatives with improved pharmacological activity and drug
availability. These modifications aim to retain the beneficial
properties of resveratrol while addressing its limitations.
For example, the phenolic hydroxyl group of RSV which is
highly susceptible to oxidation was modified with protective
groups such as methoxy, ester, amino, benzene sulfonyl,
glycoside, etc, The structural modification on the benzene
ring of RSV can improve its anti-inflammatory effects.
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Modification of the linkers between benzene rings can
enhance the anti-cancer effects, and some RSV analogues
were developed by chemical synthesis, including structures
containing naphthalene and its bioelectronic isomers.(181)
The pharmaceutical industry is increasingly interested
in RSV for its potential in treating various conditions.
Ongoing research is exploring its role in modulating
molecular pathways and providing neuroprotective effects.
(182) These advancements highlight the potential of RSV
as a versatile and valuable compound in various therapeutic

areas.

Conclusion

Mitochondrial linked
cardiovascular, and neurodegenerative diseases due to

dysfunction is to metabolic,
its crucial role in cellular metabolism. SIRT1 activators,
like RSV, show promise in preventing and treating these
conditions by enhancing mitochondrial activity. RSV, a
polyphenol, addresses oxidative stress and inflammation,
key factors in aging and chronic illnesses. Recommended
doses of RSV range from 250 to 1000 mg daily. However,
challenges in applying RSV as a nutraceutical include its
low bioavailability and the need for more clinical data
to understand its effects and optimal dosing as well as
advanced formulation and structure modification to increase
the benefit. Future research should focus on improving
RSV's bioavailability, conducting more clinical trials, and
elucidating its mechanisms of action.
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