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R E V I E W  A R T I C L E

High in polyphenols diet has been known to protect human against chronic metabolic diseases including cancer, 
diabetes, neurological and cardiovascular disorders. Resveratrol (RSV) is a natural polyphenol that presents in fruits, 
vegetables, and nuts. The polyphenols content of RSV possesses anti-inflammatory, antioxidant, immunomodulatory, 

and anticancer properties by influencing the nuclear factor-kappaB (NF-κB), p53, adenosine monophosphate-activated 
protein kinase (AMPK), mammalian target of rapamycin (mTOR), Janus kinase 2/signal transducer and activator of 
transcription 3 (JAK2/STAT3) pathways, enzymatic antioxidants expressions, and the levels of microRNAs. Therefore, this 
review article will focus on the potential of RSV in improving aging and metabolic diseases, which mostly induced by low-
chronic inflammation and oxidative stress. RSV is also known as calorie restriction (CR)-mimetics to activate sirtuins family 
which improve mitochondrial function, repair DNA and genomic stability and reduce inflammation thus become a promising 
substance to extend health span and longevity. RSV can be useful as a supplement to prevent aging-related diseases, with 
a dose range between 250–1,000 mg depending on the intended health benefit and individual factors. More clinical data is 
needed to determine the impact of RSV metabolites and the relationship between dose, concentration, and effect, particularly 
in the context of chronic illness.
KEYWORDS: mesenchymal stem cell, extracellular vesicle, exosome, cancer therapy, drug delivery

Indones Biomed J. 2025; 17(2): 109-24

Abstract

Introduction

Fruits and vegetables are rich in bioactive compounds 
known as polyphenols, which contribute to their distinctive 
colors, flavors, and medicinal properties.(1) Polyphenols 
are categorized based on their chemical structures into two 
main groups: nonflavonoids, which include phenolic acids, 
stilbenoids, and phenolic amides, and flavonoids, which 
encompass flavones, flavonols, isoflavones, neoflavonoids, 
chalcones, anthocyanidins, and proanthocyanidins.(2) 
Predominantly, these substances are plant metabolites 

characterized by their multiple aromatic rings with hydroxyl 
groups.(3) They were divided into distinct classes based 
on their chemical structures. In the small intestine, some, 
but not all, polyphenols are absorbed after gastrointestinal 
digestion, while unabsorbed polyphenols will accumulate 
in the large intestine, where they are metabolized by the 
gut microbiota. Digestive enzymes must first hydrolyze 
unabsorbed polyphenols such as glycosides before epithelial 
cells can absorb it with high lipid concentrations.(4)
	 In phase I and phase II enzymatic processes in the 
liver and enterocytes, dietary polyphenols are extensively 
degraded and/or poorly absorbed.(5) They are then 
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extensively biotransformed by the gut microbiota into a 
wide range of new chemical structures that are readily 
absorbed to reach the systemic circulation.(6) Only less than 
5% of the entire polyphenols consumed are absorbed and 
reaches the plasma unaltered.(7) Phase I and II metabolites, 
along with microbial products, are predominant in plasma, 
while the parent molecule is often undetectable by highly 
sensitive analytical methods or exists at very low plasma 
levels that fail to provide sufficient cellular concentrations 
to support overall efficacy.(8) The low bioavailability/high 
bioactivity paradox was posited because polyphenols are 
unquestionably responsible for numerous biological effects 
despite their poor oral bioavailability. Recent study has 
demonstrated that metabolites of dietary polyphenols have 
notable intrinsic bioactivities, which may account for the 
effects of the parent substances.(9)
	 Many natural compounds possess antioxidant and 
anti-inflammatory properties, by acting as reactive oxygen 
species (ROS) scavenger, and altering the expression of 
several pro-inflammatory genes such as lipoxygenase, 
cyclooxygenase, nitric oxide synthases (NOS), and 
cytokines.(10) Among those natural compounds, resveratrol 
(RSV) is a natural polyphenol that are naturally present in a 
wide variety of plant species such as fruits, vegetables, and 
nuts.
	 RSV has been described as a phytoalexin, an 
anti-infectious substance produced in particularly high 
concentrations by plants in response to environmental 
stressors like ozone exposure, UV radiation, and other 
environmental factors, as well as injury, pathogenic-induced 
damage, nutrient deficiencies, and temperature fluctuations.
(11,12) Researchers found that coronary artery disease 
(CAD) mortality was lower in Southern France than in other 
developed nations, despite consuming a diet relatively high 
in saturated fat, interest in RSV, especially the trans isomer, 
significantly increased in the early 1990s.(13)
	 RSV is known to be a caloric restriction (CR)-
mimetic. CR has been shown to increase longevity in a 
variety of organisms and even delay the onset of late-life 
diseases.(14) Autophagy, an evolutionarily conserved 
mechanism of lysosomal proteolysis in eukaryotes, is one 
of the processes that CR favours. Many drugs and trophic 
factors can control autophagy, as well as in response to food 
restriction. In addition to giving the starved cell energy 
from broken-down self-components, autophagy eliminates 
otherwise dangerous proteins, is crucial for the oxidative 
stress response, and is involved in immunological response 
and endocrine signaling. Studying autophagy in the context 
of nutrition is particularly interesting since dietary variables, 

The Immunomodulatory and 
Anti-Inflammatory Role of RSV as 

A Polyphenol

Persistent inflammation has been identified as a significant 
contributing factor to a number of human conditions, 
including cancer, type II diabetes mellitus (T2DM), obesity, 
arthritis, neurological illnesses, and cardiovascular diseases 
(CVD).(15,16) Numerous studies support the idea that 
polyphenols can improve the immune system. For example, 
RSV have cardioprotective effects  and an influence on 
immune cell populations, can alter the generation of 
cytokines, and  the expression of pro-inflammatory genes 
(17), mainly due to its anti-inflammatory properties (18). 
Research, both in vitro and in vivo, has shown that RSV 
can inhibit cyclooxygenase (COX), deactivate peroxisome 
proliferator-activated receptor gamma (PPAR-γ), and 
enhance endothelial nitric oxide synthase (eNOS) in 
rat and mouse macrophages.(17) Similarly, in RAW 
(Murine macrophages cell line) 264.7 macrophages, 
a RSV analog known as RSVA40 suppresses the pro-
inflammatory cytokines tumor necrosis factor (TNF)-α 
and interleukin (IL)-6.(19) RSV has been demonstrated to 
decrease the expression of inflammatory mediators such 
as prostaglandins and leukotrienes, adhesion molecules 
such as  intercellular adhesion molecule-1 (ICAM-1) and 
vascular cell adhesion molecule-1 (VCAM-1), by inhibiting 
inflammatory cytokines such as tumor necrosis factor 
(TNF)-α and interleukin (IL)-1.(20) Additionally, it inhibits 

such as polyphenols, might affect the health benefits linked 
to autophagy. Somehow, the exact dose of RSV to provide 
benefits, especially for chronic illness, is still not known.
	 This review will focus on the potential and safety of 
RSV among many polyphenols as a supplement to improve 
metabolic health and prevent aging-related diseases, the 
immunomodulatory effects of such dietary polyphenols, 
their anti-inflammatory properties, the various pathways 
and mechanisms that reduce inflammation, and their role in 
protecting against various chronic inflammatory disorders, 
thereby contributing to longevity and driving innovation in 
the supplement industry. This is a non-structured narrative 
review that started with framing a research question, drafting 
the review preparatory work, literature searching (Pubmed 
and Scopus) with keywords: “resveratrol”; “sirtuin”; 
“aging”; “polyphenols”; and “caloric-restriction” within 
2014–2024, and evaluation, organizing and presenting the 
results, and creating proper illustrations to aid understanding. 
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In normal cells, NF-κB presents in cytoplasm in its dormant 
form, non-DNA-binding form. IκB proteins bind to inhibit 
NF-κB. IκBs consist of precursors p100 and p105, Bcl-3, 
Iκ Bα, IκBβ, IκBγ, and IκBε.(31) IKK phosphorylates IκB 
proteins in response to stimuli, causing  ubiquitination and 
subsequent degradation of the inhibitory proteins. The 
degradation of IκB causes the release of NF-κB dimer to the 
nucleus to bind and induce the expression of cause specific 
genes.(31)
	 Oxidative stress and protein oxidation are linked to 
the increased generation of ROS.(32) Protein oxidations 
in turn cause the release of inflammatory molecules and 
various inflammatory signals, such as peroxiredoxin 2.(33) 
Moreover, an excess of ROS can cause tissue damage, 
which may also start the inflammatory responses.(34) Thus, 
polyphenols with its traditional antioxidant properties can 
disrupt the ROS-inflammation cycle,  explaining their 
anti-inflammatory properties. The antioxidant properties 
of polyphenols are well-known; they scavenge a variety 
of ROS. RSV exhibits a protective effect against lipid 
peroxidation in cell membranes and DNA damage caused 
by ROS and significantly inhibit NF-κB signaling pathway 
after cellular exposure to metal-induced radicals.(35) 
Therefore, RSV shows a potent anti-inflammatory property 
which modulate the immune system.

some inflammatory enzymes, such as COX production in 
mice, lipoxygenase (LOX) in human endothelial cells, 
mitogen-activated protein kinase (MAPK), and inhibitor of 
kappa kinase (IKK). Somehow RSV does not block COX 
expression directly.(21) Moreover, through the activation 
of the sirtuin 1/forkhead box transcription factor 1 (SIRT1/
FOXO1) pathway, RSV helps stabilize adiponectin levels 
and improve lipid metabolism.(22)
	 The consumption of polyphenols is directly linked to 
changes in the number and type of particular immune cells. 
In male C3H/HeN mice, oral intake of polyphenols from 
dates is associated with an increase in T helper 1 (Th1) cells, 
natural killer (NK) cells, macrophages, and dendritic cells 
(DCs) in the spleen and Peyer's patches.(23) Polyphenols 
can increase the population of regulatory T cells (also 
known as suppressor T cells or Treg cells) in humans, 
which are important in immunological tolerance and 
autoimmune regulation.(24) RSV enhances the expression 
of Foxp3, a key transcription factor for Treg development 
and function, thus may have benefit in autoimmune disease.
(25) Furthermore, flavonoids bind to xenobiotic-responsive 
sites in the promoter regions of some genes, such as Foxp3, 
increasing their expression and exhibiting an agonistic 
impact on the aryl hydrocarbon receptor (AhR).(26)
	 Cytokines are essential mediator proteins that 
facilitate communication within the immune system. Both 
pro-inflammatory and anti-inflammatory cytokines can 
be produced by lymphocytes, monocytes (classical, non-
classical and intermediate monocytes), macrophages, mast 
cells, endothelial cells, fibroblast cells, and stromal cells. 
Chemokines are a subset of cytokines with chemotactic 
properties. Studies conducted both in vitro and in vivo 
demonstrate that polyphenols affect macrophages by 
inhibiting key inflammatory response regulators, including 
TNF-α, IL-1β, and IL-6.(27)
	 Polyphenols exert their immunomodulatory effects 
through a variety of common mechanisms, one of which 
is the modulation of inflammatory cytokines.(28) nuclear 
factor-kappaB (NF-κB) is an essential transcription factor 
for the expression of cytokines, and cell survival. It 
regulates a cellular immune response inflammatory, stress, 
proliferative, and apoptotic reactions to many stimuli.(29) 
The target genes of NF-κB are pro-inflammatory genes such 
as COX-2, vascular endothelial growth factor (VEGF), pro-
inflammatory cytokines (e.g., IL-1, IL-2, IL-6, and TNF-α), 
chemokines (e.g., IL-8, macrophage inflammatory protein 
(MIP)-1α, and monocyte chemoattractant protein (MCP)-
1), adhesion molecules, immuno-receptors, growth factors, 
and other agents involved in invasion and proliferation.(30)

RSV as CR-mimetics and 
Autophagy Aging Inducers

Autophagy is a crucial cellular process that involves 
the degradation and recycling of cellular components 
through lysosomal pathways. This process is essential for 
maintaining cellular homeostasis, especially under stress 
conditions, by removing damaged organelles and protein 
aggregate. Autophagy is crucial for cellular quality control, 
especially under stress conditions like nutrient deprivation. 
As we age, the efficiency of autophagy declines, leading 
to the accumulation of damaged cellular components. This 
decline is associated with various age-related diseases.
(36) RSV induces autophagy through several pathways, 
prominently involving the inhibition of the mTOR pathway. 
It directly inhibits mTOR by competing with adenosine 
triphosphate (ATP), which is necessary for autophagy 
induction.(37) In this regard, RSV, either as individual 
substances (supplements) or as a component of a diet, may 
be a useful therapeutic tool for healthy aging.(38) 
	 Intracellular proteolysis is another critical cellular 
process involved in the degradation and recycling of 
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cellular components. Recent studies suggest that the 
ubiquitin-proteasome system (UPS) and autophagy are not 
entirely independent but rather part of a single proteolytic 
network. They share similarities in substrate selectivity and 
functionally cooperate to maintain cellular homeostasis.
(39) Two primary routes of intracellular proteolysis are 
proteasomal and lysosomal degradations.(40) Proteins with 
longer half-lives often degrade in the lysosome, whereas those 
with short-lived molecules degrade through the proteasomal 
system.(41) Molecules subjected to lysosomal degradation 
can reach lysosome through autophagy, phagocytosis, 
or endocytosis. In yeast, autophagic breakdown happens 
during periods of low food availability and serves as a 
survival strategy to recycle cellular components. In higher 
eukaryotes, however, autophagic proteolysis has grown in 
importance since it also breaks down molecules, cellular 
aggregates, microbes, and entire organelles that might 
otherwise damage the cell. For this reason, autophagy 
protects neurons and cardiomyocytes from damage and is 
involved in immunity and tumorigenesis.(42)
	 Autophagy can be regulated by both genetic and 
non-genetic factors. Autophagy-related genes (ATG genes) 
are involved in the formation of autophagosomes and the 
regulation of autophagy in various physiological contexts. 
While non-genetic autophagy regulated by transcriptional 
networks and post-transcriptional mechanisms, including 
the action of transcription factors, micro-RNAs (miRNAs), 
and epigenetic regulators.(43) 
	 CR  is  the  only  non-genetic  autophagy  stimulator 
proven to increase the longevity of model organisms, 
from yeast to mammals. CR is a dietary intervention 
characterized by a reduction in 20–50% of calorie intake 
without malnutrition.(44) CR helps delay or reduce the risk 
of numerous age-related illnesses by protecting biological 
processes. The positive effects of CR are driven by several 
molecular mechanisms, including modifying energy 
metabolism, lowering oxidative stress, improving insulin 
sensitivity, reducing chronic inflammation, promoting 
autophagy,  enhancing  neuroendocrine  function,  and 
inducing hormesis. Key molecular signaling pathways 
involved in CR's anti-aging impact include SIRT, 
G-coactivator-1α, AMP-activated protein kinase (AMPK), 
insulin/insulin-like growth factor (IGF), and the mTOR. 
These pathways form a highly active interaction network. 
Scientists are actively searching for natural or pharmaceutical 
CR-mimetics that can replicate the benefits of CR without 
reducing food intake, especially for individuals in mid-life 
to old age, as strict adherence to a CR diet is challenging for 
most people.(45) 

	 Potential candidates for CR-mimetics include 
rapamycin, RSV and other polyphenols, 2-deoxy-D-glucose, 
and other glycolytic inhibitors. The mechanism pathways of 
these CR-mimetics involve the insulin pathway, activated 
AMPK activators, autophagy stimulants, alpha-lipoic acid, 
and other antioxidants.(46) CR depletes intracellular acetyl 
coenzyme A (AcCoA), which is linked to the deacetylation 
of cellular proteins, by reducing cytosolic AcCoA, inhibiting 
its biosynthesis, inhibiting acetyltransferase enzymes that 
transfer acetyl groups from AcCoA to other molecules, and 
stimulating deacetylases that remove acetyl groups from 
leucine residues.(47) In vitro and in vivo studies show that 
autophagy can be effectively induced by relatively nontoxic 
natural compounds that act as AcCoA depleting substances 
(e.g., hydroxycitrate), acetyltransferase inhibitors (e.g., 
anacardic acid, curcumin, epigallocatechin-3-gallate, 
garcinol, spermidine), or deacetylase activators (e.g., 
nicotinamide, RSV). CR-mimetics can influence the same 
molecular pathways often activated by short-term fasting or 
long-term CR by inducing autophagy.(48) Furthermore, a 
variety of physiological characteristics and circumstances, 
such as the organism's metabolism, liver health, comorbid 
illnesses, microbiota characteristics, etc., affect the 
bioavailability of dietary polyphenols.(49) The amount of 
polyphenols in food does not directly correlate with their 
bioavailability in the body upon oral ingestion; since the 
bioavailability of any natural polyphenol varies.(50)
	 RSV is known to induce autophagy by activating the 
SIRT1 protein by activating autophagy-related proteins 
like LC3 and (Atg) 5 and 7.(51) The indirect pathway is 
predicated on FOXO1 activation, which triggers Rab7 
expression and causes maturation of autophagosomes and 
endosomes.(52) Furthermore, SIRT1 may activate FOXO3 
to trigger Bnip3-mediated autophagy.(53,54) The negative 
regulation of the mTOR signaling pathway is one of the 
most significant outcomes of SIRT1 activation brought on 
by RSV exposure.(51) When taken as a whole, these findings 
provide credence to the theory that autophagy control and 
senescence-associated secretory phenotype (SASP) have a 
close association thus polyphenols that target SASP through 
autophagy may have anti-aging properties.(38)

RSV Activates SIRTs as The Regulators of 
Metabolism and Healthspan

A careful balance between energy intake, utilization, and 
storage is necessary for metabolic management. In excess 
nutrition, extra energy is conserved for use when resources 
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are limited. These changes in nutrient intake, use, and 
storage are governed by a finely tuned regulatory and 
evolutionarily conserved program that involves both food 
restriction pathways involving AMPK and SIRTs. Classical 
food excess signaling pathways involving insulin, IGF1, 
and TOR (mTOR in mammals).(55)
	 The class III histone deacetylase (HDAC)-related 
conserved protein family, known as SIRTs, consists of 
seven members.(56) Interestingly, SIRTs include a catalytic 
domain that binds nicotine adenine dinucleotide+ (NAD+). 
Depending on the biological process they are involved in, 
they may act on distinct substrates. The distinct localization 
and functions of SIRTs can be partially explained by the 
differences in their length and sequence in the N- and 
C-terminal domains.(56) In recent years, an increasing 
number of studies have demonstrated their involvement in 
several pathologies, including CVDs, neurodegenerative 
diseases, muscular disorders, inflammatory and autoimmune 
diseases, metabolic disorders, and cancer.(57) Numerous 
cellular functions, including metabolism, mitochondrial 
homeostasis, autophagy, DNA repair, apoptosis, oxidative/
antioxidative balance, and senescence, are regulated by 
SIRTs.(58,59) Furthermore, mounting data supporting the 
possible application of SIRT modulators for the treatment 
of various diseases.(60)
	 The seven proteins (SIRT1–SIRT7) that make 
up the SIRT family in mammals differ in their targets, 
enzymatic activities, subcellular localizations, and tissue 
selectivity. The significance of SIRTs, particularly SIRT1, 
in maintaining metabolic homeostasis, preventing age-
related illnesses, and limiting caloric intake (as the sole 
physiological intervention that prolongs lifespan) has been 
investigated. Consequently, there was a fierce search for 
pharmacological or nutraceutical SIRT activators, which 
resulted in the discovery of many SIRT activators. Among 
these, RSV attracted the most interest.(61) It is believed that 
activation of SIRTs is advantageous for neurodegenerative 
disorders like Alzheimer's and Parkinson's as well as 
metabolic  diseases  like  T2DM  and  obesity.  This  is  
partly  due to  the  fact  that  SIRTs  increase  the  activity 
of mitochondria, which are powerhouses of the cell, as 
well as mitochondrial proteins, which are crucial in the 
aforementioned diseases.(62)
	 First identified in a yeast model (63), silent information 
regulator 2 (Sir2) has been demonstrated to control a wide 
range of cellular functions, such as the silencing of ribosomal 
DNA (rDNA) and telomeric DNA, intracellular signalling 
related to cell cycle and senescence, and the regulation of 
metabolism through the deacetylation of not only histones 

but also a number of transcription factors and cofactors.(64) 
SIRT1 is the mammalian ortholog that is closest to Sir2. 
It was first identified as deacetylating histones, but it was 
subsequently discovered that it also deacetylates additional 
protein.(65) It is involved in many biological processes, 
such as DNA repair, cell cycle regulation, apoptosis and 
inflammation (66), autophagy and aging (67), and it is 
essential for protecting human against a variety of diseases 
(68). SIRT1 catalyzes the deacetylation of histone proteins 
H1, H3, and H4's acetyl-lysine residues. Additionally, non-
histone substrates such as p53, Ku70, FOXOs, peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α), peroxisome proliferator-activated receptor 
gamma (PPAR-γ), and NF-κB are deacetylated by SIRT1.
(69,70) Through the acetylation and deacetylation of 
these substrates, which changes their transcriptional and 
enzymatic activity as well as protein levels, SIRT1 plays a 
significant role in the regulation of cellular senescence and 
organism lifespan.(71-73)
	 The p53 was the first non-histone target for SIRT1 to 
be identified. It is deacetylated and inhibited in response to 
oxidative stress or DNA damage, which impairs apoptosis.
(74,75) Therefore, it was thought that elevated SIRT1 
activity might cause tumors, but it appears that the opposite 
is true.(76) Reversible acetylation also regulates the activity 
of a transcriptional co-regulator that controls mitochondrial 
biogenesis and activity, PGC-1α.(77,78) As described 
in Figure 1, SIRT1 deacetylates PGC-1α, activates and 
triggers downstream processes of mitochondrial genes 
expression.(79) Likewise, SIRT1 regulates the acetylation 
of transcription factors FOXO, which are crucial modulators 
of glucose and lipid metabolism as well as stress reactions. 
FOXO transcription factors play a crucial role in regulating 
apoptosis. FOXO transcription factors (such as FOXO1, 
FOXO3, FOXO4, and FOXO6) can directly activate the 
expression of several pro-apoptotic genes, including Bcl-2-
interacting mediator of cell death (BIM), p53 upregulated 
modulator of apoptosis (PUMA), and Fas ligand (FasL). 
These genes encode proteins that promote apoptosis by 
triggering mitochondrial outer membrane permeabilization 
and activating caspases, which are enzymes that execute cell 
death. SIRT1 deacetylates FOXO proteins, enhancing their 
ability to induce apoptosis under stress conditions. Under 
conditions of oxidative stress or nutrient deprivation, FOXO 
proteins are activated and translocate to the nucleus. In the 
nucleus, they promote the expression of genes involved in 
cell cycle arrest, DNA repair, and apoptosis, helping the cell 
to cope with stress or, if damage is too severe, to undergo 
apoptosis. It is believed that SIRT1-mediated deacetylation 
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Figure 1. The anti-aging activity of SIRT by modulating a wide 
range of signal transduction pathways.
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adds another level of specificity to phosphorylation-based 
regulation by preferentially directing FOXO to specific 
targets rather than merely activating or inhibiting it.(62)
	 In 2003, the first SIRT1-activating compounds (STACs) 
were identified, with RSV proving to be the most effective. 
This discovery was significant as it showed that SIRTs could 
be activated allosterically. Since then, over 14,000 STACs 
from various chemical classes, including plant-based 
stilbenes (such as RSV), chalcones (such as butein), and 
flavones (such as quercetin), have been discovered through 
high-throughput screening and medicinal chemistry efforts.
(80) Imidazothiazoles (such as SRT1720), thiazolopyridines 
(such as STAC-2), benzimidazoles (such as STAC-5), and 
bridging ureas (such as STAC-9) are examples of synthetic 
STACs.(81,82) Through a K-type allosteric activation 
mechanism, each of these chemical classes lowers the 
substrate's Km value to activate SIRT1. It's interesting 
to note that recent research showed that natural fatty 
acids at the enzyme's amino terminus can trigger SIRT6 
deacetylase activity, suggesting that SIRT6 may potentially 
be susceptible to in vivo activation by synthetic compounds. 
Given that SIRT6 can improve DNA repair, alter cancer 
cell metabolism to avoid malignancy, and increase mice 
lifetime, this discovery offers an intriguing prospect.(83)

	 Rapamycin, a medication that was initially identified 
in an Easter Island bacteria, decreases organ transplant 
rejection by blocking mTOR. Rapamycin is believed to 
increase longevity by simulating diets deficient in key amino 
acids like tryptophan or methionine.(84,85) Metformin also 
suggested to have longevity effects via an AMPK-activating 
chemical derived from the Hellebore buttercup plant beside 
become the first-line treatment for T2DM.(86) 

SIRTs are desirable therapeutic targets due to their significant 
role in aging and metabolic control. RSV, a SIRT1 activator, 
prolongs life expectancy and protects against insulin 
resistance.(87,88) RSV can impact SIRT activation both 
direct and indirectly.(89,90) Direct activation and inhibition 
of SIRT5 and SIRT3 activities may also contribute to 
physiological consequences in mammals. Consistent with 
the discovery that piceatannol is a strong inhibitor of SIRT2, 
the effects on SIRT3 and SIRT5 further demonstrate that 
RSV is like chemicals that can interact with the conserved 
SIRT catalytic core rather than the proposed binding to 
the SIRT1-specific N-terminus.(91) In vivo study of RSV 
showed an opposite effect in higher concentration by 
inhibiting SIRT1 and SIRT5.(92) 
	 In yeast, gene silencing at the three silent loci requires 
Sir2.(93) In addition to gene silencing, Sir2 proteins have 
a key role in a variety of functions, including fatty acid 
metabolism (94), cell cycle regulation (95), and life span 
extension (96). The most well-researched human homolog, 
SIRT1, mediates adipogenesis (97), muscle differentiation 
(98), transcription regulation (99), p53-dependent activities 
(100), protection against axonal degeneration (101), and 
prolong life span (102,103).
	 Nicotinamide was the sole NAD+-like metabolite and 
salvage pathway intermediary that inhibit the regulatory 
effects on Sir2 enzymes (104) on life span extension (105), 
making it the most powerful inhibitor of Sir2 enzymes to date 
(106). Although nicotinamide adenine dinucleotide (NADH) 
was previously demonstrated to be a competitive inhibitor 
of NAD+ in vitro (107); the large mm binding constant 
for NADH suggests that, in the majority of physiological 
circumstances, cellular NADH levels are unlikely to control 
Sir2 activity (104). Small compounds including Sirtinol, 
splitomicin, and splitomicin analogs were shown to be 
Sir2 inhibitors by phenotypic screening. Furthermore, it 
was demonstrated that 15 plant phenols, including as RSV, 
piceatannol, and quercetin, had SIRT1 activating qualities.
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(102) RSV was the most effective activator of SIRT1 and, to 
a lesser extent, of Sir2 among all the small compounds that 
were discovered.(102)
	 SIRTs activation seems to be a more promising 
therapeutic strategy, stronger, more targeted, and more 
bioavailable substances are available.(91,108) The direct 
contact between different SIRT isoforms activator and the 
substrate, however, may settle a contentious issue regarding 
the potential of SIRT activation.(109) It describes how Sirt 
activation against the FdL1 substrate requires the C-terminal 
fluorophore (110,111) and how activation can also be 
facilitated by other C-terminal extensions, particularly 
regular amino acids. RSV activation is consistently seen by 
us and others for both complete substrate proteins and longer 
peptides without fluorophores.(92,112) According to assay 
data (92,111,113) and the observation that RSV exhibits 
Sir2-dependent effects in Caenorhabditis elegans that 
overlap with but differ from those of Sir2 overexpression 
(114), this mechanism also explains how the compound 
can activate, not affect, or inhibit a SIRT depending on 
the substrate. This sequence dependence implies that each 
SIRT/substrate pair separately when examining the effects of 
this class of compounds on SIRT-dependent deacetylation. 
Current medications only modify the deacetylation of 
a small number of particular Sirt substrates. RSV, as an 
alternative concept, suggests that the activator and substrate 
form a complex in solution, which then acts as an enhanced 
substrate.(115)
	 SIRT1 activation needs a fluorophore-containing 
substrate, even though such activation is independent of 
peptide sequence. The fluorophore prevents the peptide 
from tightly binding to the enzyme when coenzyme like 
RSV is not present. When RSV binds to SIRT1, the enzyme 
undergoes a conformational shift allowing a stronger 
fluorophore binding to the whole peptide substrate. RSV 
activation seems to be specific for SIRT1.(116) RSV-like 
compounds demonstrate the intriguing potential to create 
regulators that solely target particular SIRT/substrate 
combinations and show that a number of mammalian SIRT 
isoforms can be activated.(117)

Anti-Inflammatory Properties of RSV

Inflammation is one of the body's natural defence 
mechanism against infection or injury which is important 
in preserving tissue homeostasis under stressful situations.
(118) Inflammation is essential for human health because 
of this intricate, strictly controlled process, acts as a 

quick defence to stop possible infections, prevents further 
tissue damage, and promotes healing processes.(119) All 
inflammatory responses share a basic mechanism, which 
generally includes the following steps: 1) The target tissues 
are impacted; 2) inflammatory pathways are triggered; 
3) inflammatory markers are generated; 4) inflammatory 
cells are recruited; and 5) cell-surface pattern receptors 
identify harmful stimuli.(120,121) The cardinal signs of 
inflammation including pain (dolor), heat (calor), redness 
(rubor), swelling (tumor), and ultimately loss of function 
(function laesa), are the outcome of this intricate chain of 
events.(122)
	 Inflammation can be classified as acute as the body's 
immediate and early response to harmful stimuli, such as 
pathogens, damaged cells, or irritants. It typically lasts 
for a short period, from a few minutes to a few days; or 
chronic, when inflammation is a prolonged inflammatory 
response that can last for weeks, months, or even years.
(118) Tissue-resident cells identify infections or damage 
and start the acute phase (the early stage of the body's 
response to injury or infection) by sending chemical signals 
that intensify the local response and recruit other cells.(119) 
Acute inflammatory responses are usually characterized 
by effective molecular and cellular processes that restore 
tissue homeostasis and, consequently, the full resolution of 
inflammation.(123) In low-grade inflammation, however, 
modifying or extending the inflammatory response's 
activation might result in the second stage response, known 
as chronic inflammation, which can harm a host more than 
the pathogen itself.(124) Recurrent or persistent infections 
can cause low-grade inflammation to last throughout life, 
and new research suggests that inflammation plays a key 
role in the aetiology of a number of chronic illnesses, 
such as neurological, cardiovascular, pulmonary, and 
metabolic diseases.(125) Additionally, research has linked 
inflammation to some cancer types.(119,126)
	 The foundation of inflammation therapy is the use 
of non-steroidal anti-inflammatory medicines (NSAIDs), 
which have a limited effectiveness and a number of side 
effects such as gastrointestinal tract injury, which can result 
from long-term usage of the medication because it inhibits 
both enzyme isoforms. NSAIDs are strong COX-1 and 
COX-2 inhibitors. COX-1 is constitutively expressed in 
many tissues and produces prostaglandins that are involved 
in  maintaining  normal  physiological  functions,  while  
COX-2 is primarily induced at sites of inflammation 
and  produces  prostaglandins  that  mediate  pain  and 
inflammation. A novel anti-inflammatory drugs called coxibs 
was the creation of selective COX-2 inhibitors, which are 
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selective inhibitors, enhanced the effectiveness of NSAIDs 
and reduced the harm they caused to the gastrointestinal 
system, but they also raised the risk of hepatotoxicity and 
cardiotoxicity.(127)
	 Phytochemicals found in fruits, vegetables, nuts, and 
herbs may have pertinent positive benefits because of their 
inherent anti-inflammatory and antioxidant qualities.(128) 
Phytochemicals' hermetic qualities trigger adaptive stress 
response signaling pathways, which boost cells' resilience 
to damage and illness. As a result, natural compounds have 
garnered more attention in recent decades as potential 
sources of novel anti-inflammatory drugs.(129) RSV is 
known to have similar effects to NSAIDs as COX-1 and 
COX-2 inhibitors, making it a potential therapeutic agent 
for managing inflammatory conditions.(130)
	 Businesses working on food additives and cosmetics 
as well as the pharmaceutical sector shows growing interest 
in the use of RSV. RSV became well-known in dermatology 
applications  as  a  cosmeceutical  to  enhance  skin  health 
because of its promising prospects as a topical anti-aging 
chemical by downregulating the key transcription factors 
involved in photoaging.(131) Furthermore, because of 
its purportedly positive effects on human health, RSV 
is currently widely available as an over-the-counter 
nutraceutical.(132) As a result of this heightened interest in 
RSV activity, numerous in vitro and animal studies have been 
conducted to find out its positive effects. Numerous studies 
have shown that RSV has both preventive and therapeutic 
properties in a number of illnesses, such as diabetes, CVDs, 
and different forms of cancer.(133) These properties are 
connected by their significant anti-inflammatory action.
(132) Additionally, the beneficial biological effects of RSV 
were linked to lifetime extension in a number of studies using 

Figure 2. Some of the molecular bases 
of RSV anti-inflammatory effects.(137) 
(Adapted with permission from MDPI). 

animal models.(134) RSV has a wide range of molecular 
targets as a pharmacological agent, and it is believed that its 
effects are the consequence of its simultaneous activity on 
several targets. RSV typically serves as a strong scavenger 
of free radicals (135), and exerts its effects by interacting 
with various enzymes across different groups, including 
kinases, lipoxygenases, cyclooxygenases, and SIRTs (136). 
Figure 2 describes the molecular anti-inflammatory effects 
of RSV.(137)
	 The pathophysiology of hypertension involves 
inflammation and oxidative stress in the vascular and renal 
tissues.  RSV improves endothelial function and arteriolar 
remodelling, which has positive cardiovascular effects, 
particularly on pulmonary arterial hypertension (PAH).
(138) The most common cause of PAH is inactivating 
mutations in the gene encoding for the bone morphogenetic 
protein type II receptor (BMPRII) which plays important 
roles in embryogenesis, and the homeostasis of adult tissues. 
Patients with PAH have lung pressures higher than 25 mm 
Hg during the resting state and 30 mm Hg during exercise. 
Breathlessness, exhaustion, and chest pain are the primary 
signs of this illness.(139,140) In PAH, combination therapy 
of anticoagulants, calcium channel blockers, diuretics, 
and prostanoids is considered standard care.(141,142) The 
pathophysiology of PAH is significantly influenced by 
smooth muscle cells (SMCs). Intimal fibrosis results from 
SMCs dedifferentiating, proliferating, and secreting fibrous 
material into the subendothelial region.(143) Thus, RSV can 
support PAH improvement.
	 Oxidative stress, caused by the accumulation of ROS 
in the cellular environment, damages proteins, RNA, and 
DNA. Activating the transcription factor nuclear factor 
erythroid-related factor 2 (Nrf-2) is one way that cells combat 
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RSV Improves Mitochondrial Function 
and Protects Against Metabolic Disease

oxidative stress. Nrf-2 stimulates the transcription of genes 
that detoxify ROS and eliminate damaged proteins in order 
to increase the overall survival of cells.(144) Therefore, it 
is crucial to look for ways to restore Nrf-2 function because 
poor Nrf-2 activation causes inflammation and oxidative 
stress to be amplified or develop. Animal research has 
shown that RSV effectively counteracts pro-inflammatory 
cytokines, which can lead to arterial remodelling and the 
improvement of endothelial dysfunction. Additionally, 
RSV has been shown to reduce hypertension, improve 
small artery remodelling, and stop contractile dysfunction 
and heart hypertrophy in spontaneously hypertensive 
rats (SHR).(145,146) Interstitial immune cell infiltration 
is seen in renal tissue of untreated SHR and is linked to 
oxidative stress in renal proximal tubular epithelial cells. 
Nuclear Nrf-2 was markedly reduced in the untreated SHR. 
RSV treatment improved the progression of hypertension 
in SHR, decreased oxidative stress in proximal tubular 
epithelial cells, decreased the number of inflammatory and 
interstitial angiotensin (ANG) II-positive cells in the kidney, 
and restored the natural compound activator of Nrf-2. The 
restoration of Nrf-2 activity and the production of antioxidant 
enzymes are linked to the reduction of oxidative stress.(147) 
Glutathione-S-transferase (GST) and superoxide dismutase 
(SOD) are two examples of antioxidant enzymes that are 
important in defending cells against oxidative damage and 
aging.(148) RSV supplementation for an extended period of 
time raises SOD and GST levels in the SHR.(149)
	 Polyphenols including RSV providing anti-
inflammatory and anti-cancer benefits by trigger cell death 
in various cancer types. They alter signaling pathways, 
reduce the activity of nucleoside diphosphate kinase B, 
and induce apoptosis in bladder, colon, and lung cancer 
cells. Numerous biological functions depend on nucleoside 
diphosphate kinase B (NME2). The oncogene c-MYC, 
which contributes to the development of cancer, is influenced 
by NME2 as a transcription factor.(150) By blocking NF-κB 
pathway, polyphenols also prevent cell proliferation and cell 
cycle.(151) 
	 Many studies both in vivo and in vitro showed that 
polyphenols have been demonstrated to prevent the 
growth of malignancies of the mouth, gastrointestinal 
system, liver, lung, breast, and skin.(152) However, there 
is still much to learn about the molecular mechanisms 
behind the polyphenols' chemopreventive effectiveness. 
Oppositely, there are significant differences between 
polyphenol’s clinical results and health advantages. one 
of the main reason is that polyphenols' non-physiological 
concentrations are being tested, which may obscure their 

mode of action at therapeutic dosages.(153) However, there 
is growing evidence that certain polyphenolic substances 
influence the epithelial-mesenchymal transition (EMT), 
one of the primary routes involved in the development and 
spread of cancer. Cells lose their cell-cell adhesions, cell 
polarity, and differentiation characteristics as they undergo 
EMT, changing from an epithelial to a mesenchymal state.
(154) The cells become invasive and motile as a result of 
these alterations, which enable them to migrate through 
the extracellular matrix and reach distant areas.(155) 
Flavonoids, ellagic acid, quercetin, silymarins, RSV, and 
curcumin are just a few of the polyphenolic chemicals that 
have been shown to dramatically reduce metastasis and 
invasiveness  in  a  variety  of  malignancies  both in vitro and 
in vivo. Therefore, by blocking the EMT signaling pathways 
in cancer cells, polyphenolic substances may be able to 
stop or reverse the invasion, metastasis, and progression of 
cancer.(156)

Utilizing pharmaceutical dosages of bioactive food 
compounds such as nutrients and phytochemicals present in 
fruits, vegetables, and spice has become a viable therapeutic 
strategy to treat the intricate metabolic dysregulations 
associated with aging and chronic diseases. These 
substances are known as nutraceuticals, and the field is called 
nutrapharmacology. These chemicals can effectively alter 
the oxidative, inflammatory, and apoptotic abnormalities 
in chronic illness metabolic pathways, according to 
fundamental science publications.(157,158) More than one 
decade have passed since the first study revealed RSV's 
first in vitro and in vivo proof of cancer chemopreventative 
action (159), and since then many studies explore RSV in 
different diseases related to aging and metabolism (160,161), 
as proposed in Figure 3. The benefits of RSV are closely 
linked to its ability to improve mitochondrial function by 
activating SIRT1, which increases NAD+ levels, promoting 
mitochondrial biogenesis and improving energy production. 
It also enhances the expression of antioxidant genes, such 
as SOD and catalase, which help reduce oxidative stress and 
protect mitochondria. By activating pathways like AMPK 
and PGC-1α, RSV improves the efficiency of ATP synthesis, 
supporting better cellular energy production.(162)
	 Numerous experimental investigations have shown 
that the polyphenol RSV inhibits the development of 
fatty liver disease including non-alcoholic steatohepatitis 
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Figure 3. The main proposed mechanisms 
of action for potential clinical applications 
of resveratrol in various metabolic related 
diseases.

(NASH) and non-alcoholic fatty liver disease (NAFLD). 
It was assumed that RSV might reverse steatohepatitis, 
including hepatic inflammation and fibrosis. RSV treatment, 
when started early, partially reduced transaminase 
elevations, hepatic enlargement, and TNF-induced protein-3 
protein expression. However, high hepatic triglyceride 
levels, histological steatohepatitis, or fibrosis were largely 
unaffected by RSV treatment.(163)
	 The major causes of NAFLD and NASH are obesity 
and inflammation. In affluent nations, NASH affects 2–10% 
of adults, whereas NAFLD affects 20–33% of individuals.
(164-166) Hepatocellular ballooning and intralobular 
inflammation accompanying steatosis in NASH, can lead 
to progressive fibrosis and increase the risk of cirrhosis 
and hepatocellular carcinoma.(165) Additionally, NASH 
increases the risk of diabetes and ischemic heart disease, 
which raises the death rate for these individuals.(167,168) 
A Study on Japanese knotweed contains RSV showed a 
potential therapy option for NAFLD.(169) It appears that 
RSV mimics CR and promotes anti-inflammatory and 
antioxidant effects via activating AMPK and SIRT1.(170) 
	 Mitochondria is the primary energy sources of the 
cell, which use cellular respiration to convert nutrients 
into energy.(171) Numerous illnesses, particularly those 
affecting the cardiovascular and metabolic systems, have 

been connected to compromised mitochondrial function.
(172) Reduced mitochondrial oxidative capacity and 
ATP synthesis, a lower ratio of oxidative type 1 to type 
2 glycolytic type muscle fibers, and, lastly, a decrease in 
the expression of genes governing mitochondrial activity 
have all been linked to human muscle insulin resistance.
(172) The PGC-1α gene regulates mitochondrial biogenesis 
and function, which can help with fiber-type switching in 
muscle and adaptive thermogenesis in brown adipose tissue 
(BAT). Decreased expression of PGC-1α is reliably linked to 
diabetes muscle, characterized by muscle weakness, muscle 
mass loss and fatigue as the impact of diabetes in human or 
animal studies. A coactivator with pleiotropic properties is 
PGC-1α.(173,174) 
	 SIRT1 has recently been shown to collaborate 
with PGC-1α in regulating the genetic programs for 
gluconeogenesis and glycolysis in the liver, thereby aiding 
the body's adaptation to CR.(175) Nicotinamide and 
O-acetyl-ADP-ribose are produced via the catalysis of 
NAD+-dependent protein deacetylation, which is catalyzed 
by SIRT1, one of seven mammalian homologs of Sir2.(176) 
SIRT1 was first identified as a factor that controls longevity, 
apoptosis, and DNA repair, and also helps to convert 
nutritional status changes, which it detects through NAD+ 

levels, into adjustments to cellular metabolism.(175)
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Current Research Trends on RSV and 
Future Perspective

Nutraceuticals, such as RSV, are emerging as promising 
therapeutic agents for addressing metabolic dysregulations 
in aging and chronic diseases. Studies have shown RSV's 
potential in treating fatty liver diseases like NAFLD 
and NASH by mimicking CR and activating AMPK and 
SIRT1 pathways. Additionally, RSV's role in regulating 
mitochondrial function and gene expression helps mitigate 
muscle insulin resistance and supports overall cellular health, 
making it a valuable compound in nutrapharmacology. 
	 Despite of all aforementioned benefits, RSV is still 
facing some challenges for optimal clinical application. 
Even now, there are some contradictory studies regarding 
the effects of RSV on metabolic and age-related diseases. 
While many studies highlight its benefits, some research 
points to limitations and inconsistencies. Different studies 
have shown that RSV's effects can vary significantly 
depending on the dosage, duration of treatment, and the 
specific condition being treated. For example, while RSV has 
been shown to improve insulin sensitivity in some studies, 
others have found no significant effect.(177) RSV has low 
bioavailability, meaning that it is not easily absorbed and 
utilized by the body. This has led to mixed results in clinical 
trials, as the effective dose can be difficult to achieve. 
Nonetheless, high doses of RSV have been associated with 
adverse effects in some studies, including gastrointestinal 
issues and interactions with other medications.(178) Studies 
focusing on improving RSV's bioavailability determining 
the optimal dose for humans are required.(179)  
	 Recent ongoing research on RSV has focused on 
enhancing its bioavailability and exploring new therapeutic 
applications. Some cutting-edge discoveries and ongoing 
trends including its advance formulation, and expanding the 
application. Nanoparticle formulations are now developed 
for RSV-loaded nanoparticles. It was hoped to improve its 
bioavailability and stability. These formulations have shown 
enhanced anticancer potency compared to free resveratrol.
(180) Scientists are modifying the structure of RSV to create 
derivatives with improved pharmacological activity and drug 
availability. These modifications aim to retain the beneficial 
properties of resveratrol while addressing its limitations. 
For example, the phenolic hydroxyl group of RSV which is 
highly susceptible to oxidation was modified with protective 
groups such as methoxy, ester, amino, benzene sulfonyl, 
glycoside, etc, The structural modification on the benzene 
ring of RSV can improve its anti-inflammatory effects. 

Modification of the linkers between benzene rings can 
enhance the anti-cancer effects, and some RSV analogues 
were developed by chemical synthesis, including structures 
containing naphthalene and its bioelectronic isomers.(181) 
	 The pharmaceutical industry is increasingly interested 
in RSV for its potential in treating various conditions. 
Ongoing research is exploring its role in modulating 
molecular pathways and providing neuroprotective effects.
(182) These advancements highlight the potential of RSV 
as a versatile and valuable compound in various therapeutic 
areas.

Conclusion

Mitochondrial dysfunction is linked to metabolic, 
cardiovascular, and neurodegenerative diseases due to 
its crucial role in cellular metabolism. SIRT1 activators, 
like RSV, show promise in preventing and treating these 
conditions by enhancing mitochondrial activity. RSV, a 
polyphenol, addresses oxidative stress and inflammation, 
key factors in aging and chronic illnesses. Recommended 
doses of RSV range from 250 to 1000 mg daily. However, 
challenges in applying RSV as a nutraceutical include its 
low bioavailability and the need for more clinical data 
to understand its effects and optimal dosing as well as 
advanced formulation and structure modification to increase 
the benefit. Future research should focus on improving 
RSV's bioavailability, conducting more clinical trials, and 
elucidating its mechanisms of action.
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