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R E S E A R C H  A R T I C L E

BACKGROUND: Pentagamuvone-1 (PGV-1), a synthetic curcumin analogue, exhibits potent anticancer activity 
against Hepatocellular Carcinoma (HCC) by disrupting cell cycle regulation and downregulating key oncogenes such 
as N-Myc. Numerous studies have examined the role of glutathione (GSH) conjugation in modulating the anticancer 

properties of curcumin and its analogues. In contrast, the impact of PGV-1 metabolism, particularly GSH conjugation, and 
its implications for anticancer efficacy have not yet been elucidated. This study was performed to prepare GSH-conjugated 
PGV-1 (PGV-1-(GSH)2) as the model of PGV-1 metabolite and evaluate its potential distinct cytotoxicity on Huh-6 cells.
METHODS: PGV-1 was synthesized via an acid-catalyzed reaction between 4-hydroxy-3,5-dimethylbenzaldehyde and 
cyclopentanone while PGV-1-(GSH)2 was obtained through reflux at 70oC for 2 hours. The cytotoxic effects of PGV-1 
and PGV-1-(GSH)2 on Huh-6 and JHH4, two HCC cells, were assessed using a cell counting kit-8 (CCK-8) assay, while 
immunoblotting was performed to evaluate their impact on N-Myc and its downstream protein such as β-catenin, and p62.
RESULTS: PGV-1-(GSH)2 was prepared through GSH conjugation of PGV-1 in orange color solution, as confirmed by 
Electrospray Ionization Mass Spectrometry (ESI-MS), Fourier Transform Infrared Spectroscopy (FT-IR), and Nuclear 
Magnetic Resonance (NMR) analysis. Cytotoxicity assays revealed that PGV-1-(GSH)2 exhibited less potent anticancer 
activity against HCC cells than PGV-1. GSH conjugation also decreased the ability of PGV-1 in downregulating the N-Myc, 
β-catenin, and p62 protein level. 
CONCLUSION: The prepared PGV-1-(GSH)2 reduces the cytotoxicity of PGV-1 and its ability on downregulating N-Myc, 
β-catenin, and p62 in Huh-6 cells. These findings highlight the need for further exploration about the study of PGV-1 
metabolism which could affect the anticancer efficacy against HCC.
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Abstract

Introduction

Hepatocellular carcinoma (HCC) remains a significant 
global health challenge, representing the majority of 
primary liver cancer cases worldwide. It is associated with 
high mortality rates due to its aggressive progression and 

limited therapeutic options.(1) Natural compounds and their 
derivatives have gained considerable attention as potential 
anticancer agents, with curcumin, a polyphenolic compound 
derived from Curcuma longa, being one of the most 
extensively studied.(2,3) However, due to its instability 
and the requirement of high dose to achieve anticancer 
effect, various structural modifications of curcumin have 
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been explored to enhance its potency and pharmacokinetic 
properties.(4–6) Pentagamavunone-1 (PGV-1), a synthetic 
curcumin analogue, has demonstrated potent anticancer 
activity compared to curcumin, particularly against HCC 
cells.(7–10) PGV-1 is known to be able to maintain its 
anticancer effects, and selectively target cancer cells.(11) 
PGV-1 exerts its cytotoxic effects through dysregulation 
of cell cycle machinery, including prometaphase arrest, 
spindle microtubule rearrangement, and downregulation 
of several protein.(12–15) PGV-1 also downregulates 
one of the main oncogenes in HCC, N-Myc, resulting in 
persistent cytotoxic effects.(10) N-Myc positively correlates 
with β-catenin by regulating Wnt/β-catenin signalling 
to promote neuroblastoma cell survival.(16) In addition, 
high amplification of the MYCN gene in neuroblastoma 
is associated with downregulation of p62, resulting in 
high autophagic activity that supports carcinogenesis.(17) 
Collectively, PGV-1 possesses a promising therapeutic 
agent targeting key oncogenic pathway in HCC.
	 Curcumin undergoes extensive metabolism in vivo, 
which significantly reduces its systemic bioavailability 
and therapeutic efficacy. Curcumin underwent several 
metabolisms  including  oxidation,  reduction,  glucuronidation, 
sulfation, and glutathione (GSH) conjugation.(18,19) GSH 
conjugation on curcumin via glutathione S-transferase 
(GST)-mediated reactions has been demonstrated in 
incubation with purified human GST, human intestinal cell, 
and Caco2 cells.(19,20). The olefin moiety of curcumin 
forms a covalent bond with sulfhydryl group of GSH 
through Michael addition reaction, which is facilitated by 
the electrophilic nature of α,β-unsaturated carbonyl presents 
in curcumin.(15) This reaction results in the formation of 
glutathionylated curcumin derivatives, which influences its 
pharmacokinetics and therapeutic efficacy.(16) On the other 
hand, the olefin structure of curcumin and its analogues play 
a critical role in its anticancer mechanisms by facilitating 
interactions with cellular targets and enhancing its biological 
activity.(17) While GSH conjugation generally serves as a 
protective mechanism against electrophilic xenobiotics, it 
can also modulate drug response by altering cellular redox 
balance and affecting drug-induced cytotoxicity.(18) At low 
concentration, curcumin possesses as antioxidant effect 
and GSH inducer, while at high concentration curcumin 
demonstrated pro-oxidant effect which inhibits the GSH 
activity.(21) 
	 GSH has been known for its relation to free radical 
production.(22) Elevated GSH level has been observed in 
HCC, contributing to the cellular defence against oxidative 
stress induced by therapeutic compounds, including 

Methods

curcumin and its analogues.(23,24) Given the crucial role of 
GSH conjugation in cancer cell survival, investigating the 
effects of GSH-conjugation on curcumin and its analogues 
is essential for optimizing their therapeutic utility.
	 Several studies have explored the impact of GSH 
conjugation on curcumin and its analogues, revealing 
both beneficial and detrimental effects in the context of 
anticancer activity. On the one hand, GSH conjugation may 
enhance the solubility and stability of curcumin derivatives, 
potentially improving cellular uptake and distribution.(25) 
On the other hand, excessive GSH conjugation may lead to 
rapid clearance and diminished cytotoxic efficacy, limiting 
the therapeutic potential of these compounds.(26) In 
particular, the GSH-conjugation with curcumin analogues, 
such as PGV-1 warrants further investigation to determine 
possible enhancements or reductions of their cytotoxicity.
	 Since the influence of PGV-1 metabolism, particularly 
its conjugation with GSH on its anticancer effectiveness 
has not yet been investigated, this study was performed to 
prepare GSH-conjugated PGV-1 (PGV-1-(GSH)2) as the 
model of PGV-1 metabolite and evaluate its potential distinct 
cytotoxicity on Huh-6 cells especially on modulation of 
MYCN signalling, including N-Myc, β-catenin, and p62 in 
protein level. The olefin moiety present in PGV-1 allows for 
the introduction of GSH through a Michael addition reaction, 
facilitating the formation of conjugated derivatives. Change 
of cytotoxic activity also could be expected from the PGV-
1-(GSH)2 especially in correlation to modulation of MYCN 
signaling pathway.

Preparation of PGV-1-(GSH)2

The synthesis of PGV-1 was performed following a 
previously established protocol (27), and the GSH 
conjugation was carried out according to an earlier described 
procedure (28). The 4-hydroxy-3,5-dimethylbenzaldehyde 
(2 eq) was mixed with cyclopentanone (1 eq) under acidic 
condition with concentrated HCl. The reaction mixture 
was standing for 11 days at room temperature. The final 
product was obtained through sequential washing using 
acetic acid:water (1:1), cold water, and chloroform to 
get the PGV-1. Further reaction between PGV-1 (1 eq) 
and GSH proceeded through reflux at 70oC for 2 hours. 
The completion of GSH-conjugation reaction of PGV-
1 was monitored by Thin Layer Chromatography (TLC) 
and the resulting product was structurally characterized 
using Electrospray Ionization Mass Spectrometry (ESI-
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MS), Fourier Transform Infrared Spectroscopy (FT-IR), 
and Nuclear Magnetic Resonance (NMR) analysis. The 
preparation of PGV-1-(GSH)2 was performed based on 
previous methods with slight modifications.(20,21,23) 

Cell Culture
Huh-6 and JHH4 were grown in Dulbecco's modified eagle 
medium (DMEM) supplemented in fetal bovine serum 
(FBS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES), sodium bicarbonate, 150 IU/mL penicillin, 
150 μg/mL streptomycin, and 1.25 μg/mL amphotericin B. 
During the culture process, all cell lines were maintained 
in an incubator at 37°C with 5% CO2 and were used for 
biological assay after two passages. The research protocol 
on this study has been approved by the Ethical Committee 
of Faculty of Dentistry, Universitas Gadjah Mada (No. 226/
UN1/KEP/FKG-RSGM/EC/2023).

Cytotoxicity Assay
The procedure for cytotoxicity assay followed the previous 
published work.(12) Cells were seeded at a density of 8×103 

cells/well in a 96-well plate and cultured overnight. The 
cells were treated with varying concentrations (0.1; 0.5; 
1;5; 10; 50 mM) of PGV-1 and PGV-1-(GSH)2 compounds 
and incubated for 72 hours. The solution stock of PGV-1 
and PGV-1-(GSH)2 was prepared in dimethyl sulfoxide 
(DMSO) and MiliQ water, respectively. Cell viability was 
assessed using the cell counting kit-8 (CCK-8) reagent, and 
absorbance was measured using a microplate reader at a 
wavelength of 595 nm.

Immunoblotting for N-Myc, p62, and β-catenin Analysis
Protein expression was analysed using Abby capillary 
western blot system (ProteinSimple, San Jose, CA, 
USA) following manufacturer’s protocol with supplied 
reagent kit. Cell lysis was performed using ice-cold 
radioimmunoprecipitation assay (RIPA) buffer, followed by 
brief sonication. The lysates were then centrifuged at 10,000 
g for 10 minutes to separate cellular debris. The resulting 
supernatant were collected and mixed with fluorescent 
master mix containing sample buffer, a fluorescence 
standard, and dithiothreitol (DTT), followed by boiling as 
the denaturation step. The samples, antibodies, and reagents 
were loaded into the designated wells of the plates as 
specified in the system module. The antibodies used in this 
study included: anti-N-Myc (1:1000 dilution) (Cat #9405; 
Cell Signaling Technology, Danvers, MA, USA), anti-p62 
(1:1000 dilution) (PM045; MBL Life Science, Tokyo, 
Japan), and anti-β-catenin (1:1000 dilution) (Cat #9587; 

Cell Signaling Technology), and anti-tubulin (1:4000 
dilution) (Cat #2144S; Cell Signaling Technology). Protein 
detection was determined automatically in the instrument 
based on peak area values.

Data Analysis
Each experiment was conducted in triplicate, with a 
minimum of three replications, and analysed statistically 
using student t-test or ANOVA with a confidence level of 
>95%.

A

B

(1)

(2)

PGV-1

PGV-1-(GSH)2

(3)

Figure 1. Synthetic scheme for the preparation of PGV-1-
(GSH)2. A: Reaction condition of concentrated HCl for 11 days; 
(1): 4-hydroxy-3,5-dimethylbenzaldehyde; (2): cyclopentanone. 
B: Reaction condition of MeOH, H2O, 70oC for 2 hours

Results

Preparation of PGV-1-(GSH)2

The preparation of PGV-1-(GSH)2 was successfully 
performed as illustrated in Figure 1. Condensation 
reaction between an aldehyde compound, 4-hydroxy-
3,5-dimethylbenzaldehyde (1) with a ketone compound, 
cyclopentanone (2) in acidic conditions produced PGV-1 
compound in 48% yield. Conjugation of glutathione (3) 
with PGV-1-(GSH)2 under reflux condition produced the 
final product shown as orange colour solution.
	 Structure elucidation using the ESI-MS of PGV-1-
(GSH)2 showed the presence of a peak at 961.1771 m/z, 
which confirmed the formation of PGV-1-(GSH)2 (Figure 
2). The base peak at 948.5284 m/z was likely generated 
through further ionization, attributed to the compounds 
which contained multiple carboxylate, amide, amine, 
and phenolic hydroxyl groups, which readily underwent 
hydrogen loss. The low intensity of detected m/z in the 
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sample suggested that the PGV-1-(GSH)2 was presented in 
low abundance. 
	 The infrared (IR) spectrum of PGV-1 displayed a broad 
absorption band between 2500-3600 cm-1, corresponding 
to overlapping signals from carboxylate, amide, amine, 
and thiol groups (Figure 3). Additionally, the broad bands 
at 1591 and 1598 cm-1 likely resulted from overlapping 
carbonyl stretching vibrations of amide and carboxyl 
groups. In contrast, the IR spectrum of PGV-1 revealed 
characteristics peaks for phenolic hydroxyl group (3336 cm-

1), conjugated ketones (1650 cm-1), stretching and bending 
of aromatic or aliphatic -CH groups at ~3000 and 1640 cm-1, 
respectively. These spectral differences suggested that PGV-
1-(GSH)2 was formed.
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Figure 2. High resolution MS 
profile of PGV-1-(GSH)2. The 
PGV-1 and PGV-1-(GSH)2 were 
diluted in methanol grade LC-
MS then subjected to ESI-MS. 
Identified product of PGV-1-
(GSH)2 was shown in blue arrow.  
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Figure 3. FTIR profile of PGV-
1-(GSH)2. The PGV-1 and PGV-
1-(GSH)2 were homogenized 
with KBr and pressed into 
pellets for FT-IR analysis. The 
corresponding spectra of PGV-
1 and PGV-1-(GSH)2 spectra 
displayed characteristic peaks 
representing the functional group 
of each compound.

	 The conclusion was further supported by the absence 
of proton signals at δ 7-8 in the 1H-NMR spectrum (Figure 
4). Instead, signals at δ 3.642-1.937 correspond to methine 
(-CH) and methylene (CH2) protons of GSH. The signals for 
amide (-CONH), amine (-NH2, -NH-), carboxyl (-COOH), 
and phenolic hydroxyl (-OH) protons were absent, likely 
due to exchange with deuterium from the D2O solvent. 
The 13C-NMR spectrum further corroborated this, with 
four signals at δ 176.8-171.8 corresponding to a carboxyl 
and an amide carbonyl group of glutathione, while signals 
at δ 54.2-25.3 rose from methine and methylene groups 
(Figure 5). Notably, neither the IR nor the NMR spectra 
exhibited signals corresponding to the aromatic or olefinic 
groups of PGV-1 likely due to its poor solubility in D2O. 
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This suggested that glutathione conjugation improved the 
aqueous solubility of PGV-1.

Cytotoxic Effect of PGV-1 and PGV-1-(GSH)2 against 
HCC Cells
Cytotoxicity evaluation serves as the primary assessment 
of potential anticancer agents by determining their ability 
to reduce cell viability. This study utilized Huh-6 cells as a 
model of HCC with high MYCN expression and JHH4 as the 
model of low-expressed MYCN HCC. The dose-response 
curves demonstrated that PGV-1 and PGV-1-(GSH)2 exerted 
different cytotoxic effects on the cells. PGV-1 exhibited as 
a more potent dose-dependent reduction in cell viability 
against Huh-6 and JHH-4 cells with IC50 value of 2.41±1.94 
µM and 2.15±0.29 µM, respectively (Figure 6A). In 
contrast, PGV-1-(GSH)2 demonstrated lower cytotoxicity 
toward both Huh-6 and JHH4 cells with IC50 >50 µM 
(Figure 6A). Microscopic analysis further supported these 
findings, showing significant morphological alterations, 

Figure 4. 1H-NMR profile of PGV-1-(GSH)2.

including cell shrinkage and detachment upon treatment at 
5 µM of PGV-1, whereas PGV-1-(GSH)2 induced milder 
changes (Figure 6B, Figure 6C). Collectively, these results 
indicated that PGV-1-(GSH)2 possessed lower cytotoxicity 
than PGV-1 in HCC cells.

Effect of PGV-1 and PGV-1-(GSH)2 toward MYCN 
Signaling Protein
MYCN signaling plays a critical role in HCC progression 
by regulating cell proliferation, differentiation, and survival, 
making them key therapeutic targets. In this study, western 
blot analysis demonstrated that treatment with PGV-1 
but not PGV-1-(GSH)2, resulted in a reduction of N-Myc 
protein level and its downstream, β-catenin compared 
to untreated control, suggesting a suppressive effect on 
MYCN-driven oncogenic signaling (Figure 7A, Figure 
7B). PGV-1, but not PGV-1-(GSH)2, also downregulated 
p62 while PGV-1-(GSH)2 showed a relatively weaker 
effect, suggesting the possible suppression of autophagy 
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Discussion

Several reports demonstrate GSH conjugation as a widely 
recognized metabolic modification that influences the 
bioavailability and therapeutic potential of curcumin and 
its analogues. In rat model, curcumin is predominantly 
accumulates in intestine rather than in plasma, where 
GSH conjugation occurs more prominently.(20,29) This 
conjugation influences the bioavailability of curcumin and 
may potentially affects its biological activity.(26) Therefore, 
the evaluation of GSH-conjugated forms of curcumin 

Figure 5. 13C-NMR profile of PGV-1-(GSH)2.

degradation by PGV-1 due to GSH conjugation (Figure 
7A, Figure 7B). Collectively, these findings suggested that 
PGV-1 effectively downregulated N-Myc, β-catenin, and 
p62. However, PGV-1-(GSH)2 suppressed the modulation 
ability of PGV-1, which could affect its anticancer potential 
against HCC.

analogues, including PGV-1 was critically needed, 
particularly for their application in drug development. 
This study successfully achieved PGV-1-(GSH)2 through a 
Michael addition reaction between PGV-1 and GSH under 
reflux conditions at 70oC for 2 hours, which is significantly 
shorter than 24 hours to several day durations reported 
for other curcumin analogues-based GSH conjugates.
(28,30) However, the ESI-MS spectra showed the low 
abundance of the targeted peak suggested to the instability 
of GSH conjugation on PGV-1. This phenomenon was in 
compromise with the GSH-conjugated curcumin which 
gradually decreased the detectable peak during the Liquid 
Chromatography-Mass Spectrometry (LC-MS) analysis.
(26) The olefin moiety in PGV-1 plays a critical role in 
facilitating this reaction due to its electrophilic nature, 
allowing efficient covalent bonding with nucleophilic 
sulfhydryl group of GSH.(20) Previous studies have shown 
that the conjugation of curcumin analogues often leads to 
the formation of water-soluble compounds, improving 
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Figure 7. Modulation of PGV-1 and PGV-1-(GSH)2 on 
protein level of MYCN signaling protein. A: Western blot 
analysis was performed on Huh-6 cells treated with PGV-
1 and PGV-1-(GSH)2 at 5 µM for 24 hours to assess the 
protein expression level of N-Myc, β-catenin, and p62. 
Tubulin served as a loading control. B: Densitometric 
analysis of N-Myc, β-catenin, and p62 normalized tubulin. 
Data was presented as the mean±SEM relative to untreated. 
*Statistically significant difference compared to untreated 
group (p<0.01, analyzed with Student’s t-test).

Figure 6. Cytotoxicity of PGV-1 and PGV-1-
(GSH)2 against HCC cells. A: Dose-dependent 
cytotoxic effects of PGV-1 and PGV-1-(GSH)2 
after 72 hours of treatment against Huh-6 and 
JHH4 cells. Data was expressed in mean±SE 
(n=3). B: Morphology of the Huh-6 cells after the 
treatment of PGV-1 and PGV-1-(GSH)2 at 5 µM 
for 72 hours. C: Morphology of the JHH4 cells 
after the treatment of PGV-1 and PGV-1-(GSH)2 
at 5 µM for 72 hours. 
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solubility but sometimes reducing cytotoxic potency.(28,30) 
The successful and rapid preparation of PGV-1-(GSH)2 in 
this study suggest that modifying the olefin moiety could 
be a strategic approach to control reaction efficiency and 
stability in further curcumin analogues design.
	 The pro-oxidant properties of PGV-1 primarily drive 
its cytotoxicity by inducing oxidative stress and disrupting 
cellular redox homeostasis. Pro-oxidant properties of PGV-
1 act more rapidly than curcumin, exhibiting significant 
effects less than 12 hours of treatment against cancer 
cells.(13,31) Additionally, PGV-1 demonstrated binding 

affinity to several ROS metabolizing enzymes with distinct 
characteristics that differentiate its mechanism of action 
than curcumin.(13,32) The conjugation of PGV-1 with GSH 
introduces an additional redox-regulating factor, as GSH 
serves as a key antioxidant that neutralizes reactive oxygen 
species (ROS) and mitigates oxidative stress-induced 
cytotoxicity.(33) The observed decreased in cytotoxic 
potency of PGV-1-(GSH)2 compared to PGV-1 suggested 
that the presence of GSH counteracts the oxidative stress-
mediated cell death mechanism. This phenomenon is 
consistent with previous findings, where GSH treatment 
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attenuated the ROS elevation of PGV-1 in K562 cells.
(13) In addition, low concentration of GSH conjugated 
curcumin analogues slightly increased the percentage of 
cell survival in MDA-MB-435 cells, suggesting a reduction 
in cytotoxicity.(28) Similarly, a cytotoxicity study of GSH-
conjugated EF25 indicated a reduced cytotoxic effect, as 
reflected by a higher IC50 value at 24 hours of treatment.
(30) These findings emphasize the dual role of GSH in both 
detoxification and drug resistance, highlighting the need for 
strategies to modulate GSH metabolism to maximize the 
therapeutic efficacy of curcumin-based anticancer agents.
	 The MYCN signaling pathway plays a pivotal role 
in HCC progression, regulating oncogene expression 
and promoting cell proliferation. PGV-1 effectively 
suppressed N-Myc protein level, indicating its potential 
as a therapeutic agent targeting MYCN-driven HCC.(6–9) 
Additionally, our study revealed the role of PGV-1 on 
downregulation of β-catenin, a promotor of proliferation 
through Wnt/β-catenin signaling.(29) Wnt/β-catenin 
signaling plays a critical role in HCC by promoting 
tumor progression cancer stem cells (CSC) maintenance, 
which can be renewed in undifferentiated state (34), with 
N-Myc expression positively correlating with the activated 
Wnt/β-catenin signaling.(35) The autophagy flux marker 
p62 was also suppressed by PGV-1; however, this effect 
was counteracted by GSH conjungation. Amplification of 
MYCN induced autophagy under stress which was mediated 
by p62 protein to promote tumor survival and therapeutic 
resistance.(30) The role of p62 is more directly correlated 
autophagy compared to other autophagy markers such 
as LC3, ATG, and Beclin, as it reflected the occurrence 
of autolysosomal degradation, which lead to a reduction 
of p62.(36) However, the diminished effect of PGV-1-
(GSH)2 on N-Myc and its downstream proteins suppression 
suggested that the olefin moiety in PGV-1 was crucial for 
its interaction with MYCN-related proteins. The loss of this 
interaction upon GSH conjugation could reduce its ability 
to interfere with oncogenic signaling, thereby lowering 
its anticancer potency. The absence of olefin moiety as 
found in Tetrahydropentagamavunone-1 (THPGV-1) also 
decreased cytotoxicity of PGV-1 against HeLa, T47D, and 
WiDr cells.(31) This observation highlights the importance 
of structural integrity in curcumin analogues and suggests 
that preserving the olefin functionality could be essential for 
maintaining their therapeutic activity.
	 The findings from this study provided critical insights 
into the comparative cytotoxic effect of PGV-1 and its GSH-
conjugated form, which may have important implications for 
clinical applications. GSH levels are significantly elevated 

in HCC, playing a crucial role in cancer progression and 
respond to pro-oxidant anticancer agents.(28) Research 
has shown that GSH level could double in HCC tissues 
compared to adjacent normal liver tissues, which is 
associated with increased expression of GSH synthetic 
enzymes, such as  γ-glutamylcysteine synthetase (GCS) and 
glutathione synthesis (GS).(32) Given that GSH metabolism 
is a common pathway for many curcumin analogues, 
understanding its impact is essential for designing more 
effective derivatives with enhanced stability and anticancer 
activity.(15) Future research should explore strategies 
to modulate GSH interaction, either by inhibiting GST-
mediated conjugation or by modifying the chemical structure 
of curcumin analogues to balance metabolic stability and 
anticancer potency. These findings emphasize the need for 
careful consideration of metabolic modifications in drug 
design to optimize the clinical potential of curcumin-based 
therapeutics for HCC treatment.

Conclusion

This study demonstrates the preparation of PGV-1-(GSH)2 

as the possible metabolites of PGV-1. The GSH-conjugation 
reduces the cytotoxicity of PGV-1 against Huh-6 cells 
including the downregulation of several protein such as 
N-Myc, β-catenin, and p62. Given that GSH conjugation is 
a one of the metabolic pathways for curcumin analogues, 
its impact on PGV-1 particularly the anticancer efficacy 
requires further exploration.
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