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R E S E A R C H  A R T I C L E

BACKGROUND: Circadian rhythms regulate various physiological processes, including responses to exercise. 
However, the effects of exercise timing on cognitive function and oxidative stress remain unclear. One key factor 
in oxidative stress is nitric oxide (NO), an enzyme complex that produces reactive oxygen species (ROS) as part of 

normal cellular signaling. Excessive NO activity can disrupt redox balance and contribute to neuronal damage. An imbalance 
favoring oxidative stress can impair memory and learning, while a higher antioxidant capacity supports brain health and 
cognitive performance. This study was performed to investigate whether early active and late active aerobic exercise 
differentially impact cognitive function and oxidative stress biomarkers in Wistar rats.
METHODS: Sixteen male Wistar rats were randomly assigned to four groups: early active control, late active control, early 
active exercise, and late active exercise. The exercise groups underwent treadmill running for seven weeks, five days per 
week. Cognitive performance was assessed using the novel object recognition (NOR) test, while oxidative stress biomarkers,  
including malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were analyzed from brain tissue 
samples (hippocampus) following already established methods. Meanwhile the NO were assessed using Enzyme-linked 
Immunosorbent Assay (ELISA). 
RESULTS: This study showed that exercise timing did not significantly affect non-spatial memory performance. However, 
early active exercise led to a significant increase in SOD and GSH levels compared to the control and late active exercise 
groups, suggesting enhanced antioxidant activity. Conversely, late active exercise did not significantly impact oxidative stress 
markers. No changes was found in the NO concentration in both exercise timing.
CONCLUSION: These findings suggest that exercise performed during the early active phase may be more beneficial for 
oxidative stress regulation, potentially contributing to long-term cognitive resilience. 
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The circadian rhythm is a 24-hour internal cycle regulating 
a wide range of biological processes including sleep-wake 
cycles, hormone secretion, metabolism and oxidative 
balance. This rhythm is centrally governed by the 
suprachiasmatic nucleus (SCN) and synchronized with 
environmental cues such as light and dark.(1) Disruptions 
to circadian alignment, through behaviors like shift work or 
irregular sleep patterns have been linked to increased risk of 
chronic diseases.(2,3)
	 Emerging evidence suggests that aerobic exercise not 
only supports cardiovascular and metabolic health but also 
modulates circadian clock, but also potentially affecting 
cognitive by enhancing mempry and learning, as well as 
affecting and oxidative outcomes depending on the time of 
day it is performed.(4,5) Exercise timing that classified as 
early active or late active is defined relative to an organism’s 
internal clock with early active exercise typically performed 
soon after the start of the activity phase (zeitgeber time 0) 
and late active exercise occurring toward the end of this 
phase.(6)
	 While human studies are often limited by confounding 
factors such as diet, chronotype and light exposure (7,8), 
the controlled animal studies offer a clearer opportunity to 
explore how exercise timing interacts with physiological 
parameters. In particular, rodent models enable precise 
control of environmental variables and provide insight into 
mechanisms such as oxidative stress and memory function.
Oxidative stress plays a significant role in age-related 
cognitive decline. It arises from an imbalance between 
reactive oxygen species (ROS) and antioxidant defenses 
with enzymes such as superoxide dismutase (SOD), 
glutathione peroxidase (GPx) and catalase along with 
molecules like glutathione (GSH) that working to neutralize 
ROS and maintain redox homeostasis.(9) Nitric oxide (NO), 
is a primary source of ROS production. Overactivation 
of NO, often due to stress or aging, leads to elevated 
oxidative damage and impaired neuronal function.(10,11) 
Malondialdehyde (MDA) is a key biomarker of lipid 
peroxidation and oxidative stress, while increased levels of 
endogenous antioxidants like SOD and GSH are considered 
protective against cognitive decline.(12,13) Studies have 
found that higher oxidative balance scores correlate with 
improved cognitive outcomes.(14,15)
	 Regular aerobic exercise is known to stimulate 
adaptive antioxidant responses. Although it transiently 
elevates ROS production, consistent training enhances 

Methods

Experimental Animal
Male Wistar rats aged approximately three months, weighing 
between 160–180 g were obtained from the Animal 
Resource Unit, Faculty of Medicine, Universiti Kebangsaan 
Malaysia. Because the fluctuating ovarian-hormone milieu 
of the estrous cycle leads to a larger variance in behavioural 
and biochemical endpoints, to obtain more homogeneous 
baseline data and to reduce the number of animals required, 
only male Wistar rats were used.(20) Using males therefore 
controls for hormonal cycling without compromising the 
generalisability of the findings while also aligning our 
protocol with the majority of prior exercise-neurobiology 
work in Wistar rats facilitating direct comparison. 
Throughout the experiment, rats were housed individually 
in ventilated cages at a controlled temperature of 24–26°C 
with a 12-hour light/dark cycle and were given ad libitum 
access to food and water. Animal care and experimental 
procedures were conducted according to ethical guidelines 
with the UKM Animal Ethics Committee (UKMAEC) 
approval (FSK/2022/FARAH/26-JAN/1220-JAN.-2022-
OCT.-2023). Sixteen rats were randomly divided into four 
groups which were early active control, late active control, 
early active exercise and late active exercise. Control groups 
did not undergo any exercise but were subjected to the same 
housing and handling conditions as the exercise groups.

Aerobic Exercise Protocol
Before the start of the exercise phase, all rats underwent a 
7-day adaptation period to acclimate to their environment 
and the treadmill exercise equipment. In the last two days 

antioxidant enzyme activity, reduces MDA levels over time 
and supports neuroplasticity thereby improving cognition 
including the non-spatial memory.(14,16,17) Recent 
studies also indicate that the timing of aerobic exercise 
may modulate these benefits. Early active exercise has been 
associated with improved metabolic outcomes and oxidative 
balance, while late active exercise may align with physical 
performance peaks but potentially generate a different 
redox response.(5,18,19) However, the mechanisms 
through which exercise timing impacts oxidative stress and 
cognition remain poorly defined. Therefore, this study was 
performed to understand how exercise timing influences 
these parameters may provide new insight into optimizing 
exercise interventions for cognitive and metabolic health 
through circadian alignment.

Introduction
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of this period, rats in the exercise groups were familiarized 
with treadmill running at a speed of 10 m/minute for 5 
minutes daily. Following adaptation, the exercise groups 
began a structured aerobic exercise protocol that lasted for 
seven consecutive weeks. The exercise protocol included 
treadmill running at 18 m/minute for 30 minutes per day, 
5 days a week.(21) The early active group exercised at 
8:00 AM, while the late active group exercised at 8:00 PM. 
The respective control groups were placed on the treadmill 
for 30 minutes per day but did not run ensuring consistent 
environmental exposure. The treadmill (Orchid Scientific 
& Innovative, Maharashtra, India) was equipped with 
adjustable speeds to accurately control exercise intensity.

Novel Object Recognition (NOR) Test
This test was designed to assess non-spatial memory 
performance by observing natural exploratory behaviour of 
rats, which had an innate tendency to explore novel objects 
more than familiar ones. The assessment was conducted 
in soundproof rooms illuminated by a red fluorescent 
light source exceeding 20 watts to ensure clear video 
recordings, with a camera positioned above to capture the 
rats' behaviour. Before the trials, a 3-minute familiarization 
period was provided to allow the rats acclimatization. 
During the first trial, the rats were allowed to explore two 
identical objects, which were a pair of white glass bottles, 
each 12 cm in height, for 5 minutes. Following a pre-
determined intertrial interval, the second trial introduced 
one familiar object from the first trial and one novel object, 
which was a black glass bottle also 12 cm in height, with 
a 6-minute exploration period. Memory performance was 
measured based on the time spent investigating the novel 
object during the second trial. A greater exploration time for 
the novel object compared to the familiar one suggested that 
the rat remembered the familiar object and was naturally 
drawn to investigate the new object.

Oxidative Stress Analysis
MDA, SOD, and GSH assessment were performed to 
determine the impact of varying exercise timings on 
the oxidative stress biomarkers. MDA was measured to 
assess lipid peroxidation (22) using the thiobarbituric 
acid reactive substances (TBARS) method following 
the established procedure (23). SOD was measured as a 
key enzymatic antioxidant and was assessed following 
previous protocol (24), with a slight modification. SOD 
activity was determined based on the enzyme’s capacity 
to inhibit nitroblue tetrazolium (NBT) reduction, with one 
unit of activity defined as the amount of enzyme required 

to achieve 50% inhibition of NBT reduction under the 
assay conditions. Meanwhile GSH was measured as a 
non-enzymatic antioxidant (25), and the GSH levels were 
quantified following the established method (26). At the end 
of the 8-week exercise intervention, rats were euthanized 
without anesthesia to prevent hypoxia-related alterations in 
oxidative stress markers. 

Enzyme-linked Immunosorbent Assay (ELISA) 
Procedure for NO Measurement
Serum levels of endothelial nitric oxide synthase (eNOS/
NOS3) were quantified using Rat NOS3/eNOS ELISA kit 
(Cat. No. PN803814; ELABscience, Wuhan, China), with 
a detection range of 15.63–1000 pg/mL a sensitivity of 
9.38 pg/mL. Briefly, serum samples were brought to room 
temperature, centrifuged at 3000 rpm for 20 minutes, and 
diluted accordingly. Measurement of samples, standards and 
blanks were performed in duplicate and strictly according 
to the manufacturer’s instructions. Upon completion of the 
reaction by Stop Solution, absorbance was read at 450 nm. 
eNOS that representing NO concentration was determined 
using a 4-parameter logistic standard curve. Out-of-range 
samples were re-assayed with appropriate dilution.

Statistical Analysis 
All data were analyzed using GraphPad Prism 9.3.1 
(GraphPad Software, San Diego, CA, USA) and are shown 
as mean±standard error of the mean (SEM). A mixed-model 
ANOVA was used to assess neurobehavioral outcomes while 
a two-way ANOVA was used to compare oxidative stress 
markers between groups. Data were checked to ensure they 
met all the assumptions prior to the statistical test. Results 
were considered statistically significant at p<0.05.

Results

No Changes in Non-spatial Memory
No significant differences were found between the control 
and exercise groups (p>0.05) regardless of whether the 
exercise was performed in the early or late active phase across 
all measured time points (Figure 1). Since the preference 
percentage ratio reflected non-spatial memory, these results 
suggested that exercise timing did not significantly affect 
non-spatial memory performance.

Exercise Decreased the MDA Levels 
No significant differences were found in the mean 
concentration of MDA between the control and exercise 
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Figure 1. Effects of early and late exercise on non-spatial 
memory performance over time. Non-spatial memory 
performance was assessed at three time points: Baseline, Pre-
Exercise, and Post-Exercise. Values are expressed relative to 
baseline (set to 1). Data are presented as mean±SEM (n=4).

Figure 2. Comparison of mean MDA concentrations in the control and exercise groups and their correlation with preference 
percentage. A: Mean MDA concentration (nmol/g protein) in control and exercise groups for early active and late active sessions. B: 
Correlation between mean MDA concentration and preference percentage. Statistical analysis was performed using two-way ANOVA. 
Data are presented as mean±SEM (n=4). Post hoc: n.s. means non-significant differences compared to controls (late and early active).
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groups (p>0.05) regardless of whether exercise was 
performed in the early or late active phase (Figure 2A). 
However, the mean MDA concentration in the exercise 
group appeared higher than in the corresponding control 
group though this difference was not statistically significant.
	 No associations were found between non-spatial 
memory performance (preference percentage) in the 
exercise group (regardless of exercise timing) and mean 
MDA concentration (nmol/g protein), although a positive 
trend was observed (r=0.421, p=0.226) (Figure 2B). These 
findings suggested that non-spatial memory performance in 
the exercise group was not directly linked to oxidative stress 
as indicated by MDA levels under the conditions tested.

Increase of SOD Enzyme Activity Levels in Early Active 
Exercise
SOD enzyme activity in the early-active exercise group was 
significantly higher than in both the control group and the 

late-active exercise group (p<0.05) (Figure 3A), suggesting 
that early-active exercise may enhance antioxidant activity. 
In contrast, the late-active exercise group showed no 
significant difference in SOD activity compared to its 
control group (p>0.05).
	 No correlation was observed between non-spatial 
memory performance (preference percentage) and SOD 
activity levels (U/mg protein) in exercise group regardless 
of exercise timing (r=0.178, p=0.623) (Figure 3B).

Increase in GSH Levels in Early Active Exercise
GSH levels in the early-active exercise group were 
significantly higher than those in both the control group 
(p<0.05) and the late-active group (Figure 4A). No 
significant difference in GSH levels was found between the 
late-active exercise group and the control group. However, 
the overall pattern in Figure 4A suggested that exercise may 
increase antioxidant levels, as both exercise groups showed 
higher GSH levels than the control.
	 Figure 4B presented the correlation analysis between 
non-spatial memory performance (preference percentage) 
and GSH concentration (nmol/g protein) in the exercise 
group regardless of timing. A positive trend was observed 
with a borderline significant correlation (r=0.592, p=0.071) 
suggesting that higher GSH levels may be linked to better 
non-spatial memory performance.

No Changes in NO Concentration 
There are no significant differences in NO concentration 
between the control and exercise groups regardless of 
whether exercise was performed in the early or late active 
phase (Figure 5). These findings suggested that exercise 
timing did not significantly affect NO levels. The SEM 
value was 36.480.
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Figure 3. Comparison of mean SOD enzyme activity in the control and exercise groups and their correlation with preference 
percentage. A: Mean SOD enzyme activity level (U/mg protein) in control and exercise groups for early active and late active sessions. B: 
Correlation between mean SOD enzyme activity level concentration and preference percentage. Statistical analysis was performed using 
two-way ANOVA. Data are presented as mean±SEM (n=4). Post hoc: **p< 0.01 compared to the control group (late active), n.s. means 
non-significant differences compared to the control group (late active).

Figure 4. Comparison of mean GSH concentrations in the control and exercise groups and their correlation with preference 
percentage. A: Mean GSH concentration (nmol/g protein) in control and exercise groups for early-active and late-active sessions. B: 
Correlation between mean GSH concentration and preference percentage. Statistical analysis was performed using two-way ANOVA. Data 
are presented as mean±SEM (n=4). Post hoc: **p< 0.01 compared to the control group (late active), n.s. means non-significant differences 
compared to the control group (late active). 

Discussion

This study investigated the effects of early and late active 
aerobic exercise on non-spatial memory and oxidative 
stress biomarkers in Wistar rats. While exercise timing did 
not significantly affect non-spatial memory, early active 
exercise showed a greater enhancement in antioxidant 
enzyme activity particularly SOD and GSH compared to 
late active exercise.(25) These findings suggest that exercise 
timing may influence the oxidative stress response more 
than cognitive outcomes.
	 The absence of significant improvement in non-spatial 
memory supports earlier findings that the cognitive benefits 
of exercise are often task-dependent and may require longer 
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interventions.(27,28) Some previous studies have shown 
that spatial memory and hippocampal plasticity respond 
more robustly to aerobic exercise often requiring at least 12 
weeks  of  intervention  for  structural  changes  to  emerge.
(29-31)
	 Oxidative stress is a key factor in aging and 
neurodegeneration (32), and improving antioxidant defences 
is critical for brain health (33,34). The increased SOD and 
GSH levels in the early active group suggest that this timing 
better aligns with circadian patterns of antioxidant activity.
(5) This may reflect the circadian regulation of enzymes 
such as brain and muscle ARNT-like protein 1 (BMAL1), 
circadian locomotor output cycles kaput (CLOCK), and 
Period (PER), which peak in the early active phase and 
drive antioxidant gene expression.(35-37)
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Figure 5. The mean NO concentration in the control and 
exercise groups. Statistical analysis was performed using two-
way ANOVA. Data are presented as mean±SEM (n=4). Post hoc: 
n.s. means non-significant differences compared to controls (late 
and early active).
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Conclusion

Early active exercise significantly increased antioxidant 
enzyme levels with higher SOD and GSH concentrations 
compared to both control and late active exercise groups 
which indicating an enhanced antioxidant defense. 
Although MDA levels were slightly elevated in the exercise 
groups, these changes were not statistically significant. No 
significant alterations were observed in NO levels across 
all groups suggesting no effect of exercise timing on this 
oxidative stress marker. Additionally, exercise timing 
did not influence the non-spatial memory performance in 
Wistar rats. These findings suggest that early active exercise 
is more effective in promoting oxidative stress regulation 
which potentially contributes to long-term neuroprotection 
even in the absence of short-term cognitive improvements.
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	 Although MDA levels did not significantly differ 
between groups, a slight increase in the exercise groups 
may reflect a transient rise in lipid peroxidation following 
acute stress consistent with the hormesis theory.(16,17,38) 
This adaptive mechanism has been observed in both human 
and rodent studies, where exercise initially increases 
oxidative markers but ultimately strengthens antioxidant 
defences.(39,40) The weak correlation between MDA and 
cognitive outcomes suggests that other mechanisms such as 
inflammation or neurotrophic signaling that may mediate 
the relationship between exercise timing and cognition.
	 A limitation of this study was the small sample size 
in each group as the number of rats (n=4) was reduced than 
initially planned. This constraint due to supply limitations 
from the Universiti Kebangsan Malaysia Animal House 
restricts the availability of animals. The reduced sample size 
may have affected the statistical power of the analyses and 
limited the generalizability of the findings. Additionally, 
the cognitive assessment was confined to the NOR test 
that predominantly evaluates non-spatial memory. Other 
cognitive domains such as spatial memory (using the Morris 
Water Maze), executive function or working memory were 
not assessed narrowing the scope of cognitive evaluation 
of the subject. The study also did not explore molecular 
signaling pathways such as brain-derived neurotrophic 
factor (BDNF), cAMP response element-binding protein 
(CREB) or core circadian genes like BMAL1 and CLOCK 
nor did it assess structural changes such as hippocampal 
neurogenesis. The absence of these analyses limits the 
understanding of the mechanistic underpinnings behind the 
observed biochemical and behavioural effects. Future studies 
should incorporate additional neurobiological markers 

such as BDNF and inflammatory cytokines to elucidate 
the pathways linking exercise timing, oxidative stress and 
cognition. Understanding the optimal timing of exercise 
could have important implications for neuroprotection 
and cognitive health. Future studies also should explore 
the underlying molecular mechanisms and assess whether 
similar effects occur in humans to optimize exercise-based 
interventions for brain health. 
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