

R E S E A R C H A R T I C L E

Bioscrew of Green Mussel (*Perna viridis*) Shells-derived Hydroxyapatite, Polylactic Acid and Polycaprolactone Increases Procollagen 1 Intact N-Terminal Propeptide and Alkaline Phosphatase in Rabbit Model with Bone Defect

Kartika Dwi Aprisia¹, Eriawan Agung Nugroho², Meita Hendrianingtyas³,
Robin Novriansyah², Yora Nindita⁴, Kevin Cristian Tjandra⁵, Danendra Rakha Putra Respati⁵,
Fitri Mutmainnah⁶, Ferry Sandra^{7*}

¹Department of Biomedical Sciences, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Soedarto, Semarang 50275, Indonesia

²Department of Surgery, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Soedarto, Semarang 50275, Indonesia

³Department of Clinical Pathology, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Soedarto, Semarang 50275, Indonesia

⁴Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Soedarto, Semarang 50275, Indonesia

⁵Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Jl. Prof. Soedarto, Semarang 50275, Indonesia

⁶Department of Medicine, Faculty of Medicine, Universitas Andalas, Kampus Limau Manis, Padang 25163, Indonesia

⁷Department of Biochemistry and Molecular Biology, Division of Oral Biology, Faculty of Dentistry, Universitas Trisakti, Jl. Kyai Tapa No. 260, Jakarta 11440, Indonesia

*Corresponding author. Email: ferry@trisakti.ac.id

Received date: Aug 8, 2025; Revised date: Nov 3, 2025; Accepted date: Nov 5, 2025

Abstract

BACKGROUND: Hydroxyapatite (HA) is essential for bone regeneration and healing. Green mussel (*Perna viridis*) shell is a potential choice for preparing HA because they are abundant, widely available, have a smaller particle size, and have a higher HA content. Rather than using HA in powder or granule form, bioscrew has been fabricated as a composite of green mussel shell-derived HA, polylactid acid and polycaprolactone. However, its dynamic bone healing process has not been clearly disclosed, therefore Procollagen 1 Intact N-Terminal Propeptide (P1NP) and bone Alkaline Phosphatase (ALP) were investigated.

METHODS: Male New Zealand white rabbits (*Oryctolagus cuniculus*) were used as animal model. The rabbits were anesthetized and prepared for surgery. A standardized defect was created in the metaphyseal region. For the treatment group, the defect was filled with a bioscrew implant, whereas the control group did not receive any implant. At week-2, -4 and -6 post-surgery, about 3 mL of blood was collected from rabbits' marginal ear vein to collect blood serum. The serum was used to quantify P1NP and ALP levels using Enzyme-linked Immunosorbent Assay (ELISA). Data of P1NP and ALP levels were then statistical analyzed.

RESULTS: P1NP level of the treatment group was significantly ($p<0.05$) higher than the one of control group since the first monitor, at week-2. At the next monitor (week 4 and 6), P1NP levels of the treatment group were also significantly ($p<0.05$) higher than the ones of control group. In accordance with the P1NP results, the ALP level of the treatment group was significantly ($p<0.05$) higher than the one of control group.

CONCLUSION: Since bioscrew of green mussel shell-derived HA, PCL and PLA could increase the PINP associated early matrix synthesis, and ALP associated with later-stage mineralization, it can be concluded that bioscrew of green mussel shell-derived HA, PCL and PLA can be a promising material to promote bone repair.

KEYWORDS: bone, HA, green mussel, bioscrew, P1NP, ALP, PCL, PLA

Introduction

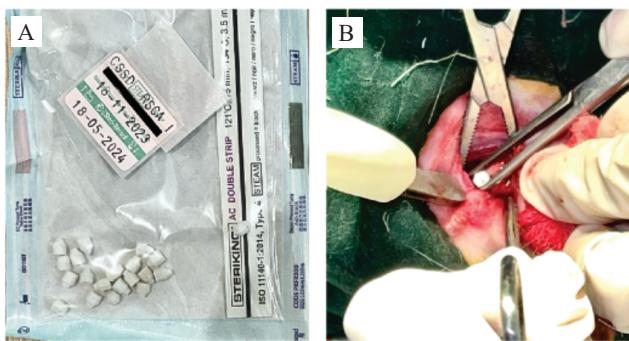
Indonesia has the most significant incidence of fractures in Southeast Asia. The main causes are falls and traffic accidents, and in some cases caused by particular diseases. (1,2) Fracture healing requires basic biological requirements, which are a combination of mechanical stability due to proper fixation, synthesis, adequate bone angiogenesis, osteoclast and osteoblast, growth factors, and contact between broken bone fragments.(3,4) Materials made from polymers have a lower elastic property than human bone, so they can be combined into a biocomposite to have biological, mechanical and physical properties similar to human bone. Hydroxyapatite (HA) is one of the polymers in the form of calcium phosphate compounds that are stable and used as biomaterials for bone replacement.(5)

Recent studies have highlighted the ability of biological and natural materials on inducing bone formation (6,7), as well as creating scaffolds, such as biosilica-based composites from marine sponges namely *Melophlus sarasinorum* and *Xetospongia testudinaria* that immensely increased osteogenic differentiation and bone regeneration (8). Similar studies with marine-derived HA xenografts have shown increased osteoblast growth and higher levels of osteocalcin expression, with other findings offers insights into the molecular pathways regulating bone resorption and formation.(9-12) Additionally, *in vivo* experiments indicate that interventions using biomaterials can significantly improve bone turnover by boosting osteoblast activity and lowering osteoclast activity.(13) Alkaline phosphatase (ALP) has been shown as a reliable marker of osteoblast activity as its upregulations reflects increased bone formation.(14) Additionally, adding bioactive compounds has been shown to improve bone remodeling by increasing ALP activity and stimulating osteoblast growth.(15)

Green mussel (*Perna viridis*) is a promising source of HA due to their abundance, availability, smaller particle size, and higher HA content.(16) Green mussels shell-derived HA can be combined as biocomposites, which consist of a combination of two or more different materials in the form of microscopic units that have different chemical and physical properties from each other. The biocomposite used in this study was the combination of polylactid acid (PLA), polycaprolactone (PCL), and HA. PLA and PCL composites have biocompatibility, biodegradability, and non-toxic properties.(17-19)

Although previous studies have explored HA derived from green mussel shells for bone formation, this study was

conducted to introduce a distinct and innovative approach by integrating HA into a fully functional bioscrew rather than using it in powder or granule form. Bioscrew was fabricated as a composite of HA, PLA and PCL. This material was used to mimic bone structure and to increase functional properties in superior fixation, gradual biodegradation, and enhanced biological responses. To understand its dynamic bone healing process, the bone formation markers, including Procollagen 1 Intact N-Terminal Propeptide (PINP) and ALP were investigated at multiple time points.


Methods

Animal Preparation and Ethical Approval

Forty healthy, male, 6–12 months, 2.5–3.0 kg, New Zealand white rabbits (*Oryctolagus cuniculus*) were selected and acclimatized for 7 days under standard laboratory conditions (temperature 22–25°C, 12-hour light/dark cycle, and relative humidity of 50–60%). The rabbits were provided with standard pelleted feed and water *ad libitum*. The rabbits were randomly assigned using a computer-generated sequence to one of the study groups. The study was conducted between September 2023 and August 2024 at the Animal Center in Semarang and the Anatomical Pathology Laboratory, Faculty of Medicine, Universitas Diponegoro. All animal procedures adhered strictly to national and institutional standards for ethical animal care, applying the principles of the 3Rs (Replacement, Reduction, and Refinement). Ethical approval for the study was obtained from the Health Research Ethics Committee, Faculty of Medicine, Diponegoro University (Approval No. 110/EC-H/KEPK/FK-UNDIP/IX/2023).

Bone Defect Model and Implant Surgical Procedure

As preoperative prophylaxis, rabbits were administered intravenously with 5 mg/kg enrofloxacin through the lateral auricular vein. Anesthesia was conducted with intramuscular administration of 10–40 mg/kg ketamine combined with 0.5–1 mg/kg acepromazine into the caudal longissimus dorsi muscle. After skin preparation and aseptic draping, a longitudinal incision was made along the lateral femoral shaft. A standardized defect, 4 mm in diameter and 4 mm deep, was created in the metaphyseal region using a sterile drill bit at pressures below 180 MPa. Micro-computed tomography was used for accurate femoral landmarks and dimensions.(20) For the treatment group, the defect was filled with a bioscrew implant, whereas the control group did not receive any implant (Figure 1). Bioscrew implant

Figure 1. Bioscrew design and implantation in the rabbit femur. A: Macroscopic view of the bioscrew. B: intraoperative photograph showing the placement of the screw into the femoral bone of the rabbit.

used in this study was a composite material of 80.75% PLA, 14.25% PCL, and 5% green mussel shells-derived HA.(14) After surgery, the rabbits were observed for 24 hours to assess for signs of pain, distress, surgical site infection, and procedural complications. Postoperative care included oral administration of 2 mg/kg carprofen and 5 mg/kg enrofloxacin, was performed. Then, the rabbits were returned to standard housing conditions and monitored for 2, 4 and 6 weeks. Daily observation was performed to monitor appetite, wound healing, and mobility. At study completion, humane euthanasia was carried out with a ketamine overdose followed by cervical dislocation, in full adherence to The American Veterinary Medical Association (AVMA) and institutional ethical guidelines.

Blood Collection and Preparation

At week-2, -4 and -6 post-surgery, rabbits' marginal ear vein was disinfected and warmed to improve venous access. About 3 mL of blood was collected using 23G butterfly needle and serum separator tube. The blood was centrifuged at 3000 rpm for 10 minutes to collect the blood serum.

P1NP Enzyme-linked Immunosorbent Assay (ELISA)

Serumal P1NP level was quantified using Rabbit P1NP ELISA Kit (Cat. No. MBS017936; MyBioSource, San Diego, CA, USA), which was a sandwich ELISA kit with detection range of 6.25 ng/mL-200 ng/mL and the sensitivity level of 1 ng/mL. P1NP ELISA was performed according to the manufacturer's protocol. Briefly, antibody specific for P1NP was pre-coated on the strip plate. Standards and serum were pipetted into the wells. Horseradish Peroxidase (HRP)-conjugate reagent was added to the wells and incubated for 60 min. After washing, chromogen was added to the wells and incubated for 15 min. After adding stop solution, the color was developed in proportion to the amount of P1NP

bound from blue to yellow. The color intensity was measured immediately using a microplate reader at the absorbance at 450 nm.

ALP ELISA

For quantification of ALP, Rabbit ALP ELISA Kit (Assay Genie, Dublin, Ireland) was used. It was a Sandwich ELISA kit as well with detection range of 0.156-10 ng/mL and the sensitivity level of 0.094 ng/mL. ELISA was performed according to the manufacturer's protocol. Briefly, standards and 1:200 diluted serum were added in to each well of the 96-well plate precoated with capture antibody for rabbit ALP. After washing, the biotin conjugated antibody was added in to each well as the detection antibody. After washing off unbound conjugates, HRP-Streptavidin was added. After a third washing, 3,3',5,5'-tetramethylbenzidine (TMB) substrate was added. After adding acidic stop solution, blue color product turned yellow. The color intensity was measured immediately using a microplate reader at the absorbance at 450 nm.

Statistical Analysis

After Sapiro-Wilk test, when the data were normally distributed, independent t-tests and repeated ANOVA were used. An Independent t-test was conducted to test the treatment and control groups, while repeated ANOVA was conducted to compare between weeks in each group. When the data were not normally distributed, Mann Whitney and Friedman tests were used. Differences were considered significant if $p<0.05$.

Results

After surgery, the rabbits of both treatment and control groups, did not show any sign of pain, distress, surgical site infection, and procedural complications.

Bioscrew implant increased P1NP level

P1NP level of the treatment group was significantly ($p<0.05$) higher than the one of control group since the first monitor, at week-2 (Table 1). At the next monitor (week-4 and -6), P1NP levels of the treatment group were also significantly ($p<0.05$) higher than the ones of control group. However, the P1NP levels of treatment group at week-2, -4 and -6 were not significantly increase along with the period. Similar to the treatment group, the P1NP levels of control group at week-2, -4 and -6 were also not significantly increase along with the period.

Table 1. P1NP level of treatment and control groups.

Assessment Time	P1NP Level (nmol/L)		<i>p</i> -value
	Treatment Group	Control Group	
Week-2	322.93±10.56	265.35±55.69	0.025 ^{a,*}
Week-4	353.78±47.11	284.75±51.44	0.036 ^{b,*}
Week-6	350.93±33.00	283.27±53.38	0.025 ^{b,*}
<i>p</i> -value	0.069 ^d	0.899 ^c	

^aMann-Whitney; ^bIndependent-t; ^cRepeated ANOVA; ^dFriedman.

Bioscrew implant increased ALP

In accordance with the P1NP results, the ALP level of the treatment group was significantly (*p*<0.05) higher than the one of control group (Table 2). However, at week-4, ALP level of the treatment group was not significantly higher than the one of control group. Later on, at week-6, ALP level of the treatment group was again significantly higher than the one of control group. The ALP level of both treatment and control groups at week-2, -4 and -6 were also not significantly increase along with the period.

Discussion

Bone healing can be influenced by several factors, including the presence of an osteoconductive matrix, which facilitates mineralization and supports the attachment of osteoconductive and osteogenic cells at the fracture site. (21) Bone tissue consists of approximately 69% minerals, 22% organic matter, and 9% water, with HA accounting for nearly 50% of its mineral fraction, making it crucial for bone regeneration and repair.(18) Additionally, PLA and PCL used in the composite demonstrate favorable properties such as biocompatibility, biodegradability, and non-toxicity. (17,18)

Bone formation levels tend to be expected or slightly increased in the bone healing process due to the influence of HA content, which can work as a scaffold in bone.

The content of PLA and PCL in bioscrews can increase bone formation and decrease inflammatory cells *in vivo*, compared to standard polymer materials. PLA and PCL can also improve strength retention, bone-bonding potential, and pH buffering during the fracture bone healing period. (21-23)

P1NP and ALP are important biomarkers to evaluate bone healing which could be measured from the blood sample.(19,24) Significant higher P1NP and ALP levels of the treatment group than the ones of control group were obtained since the first monitor at week-2, suggesting that bioscrew of green mussel shell-derived HA, PCL and PLA could have an efficacy in accelerating bone healing. However, the P1NP and ALP levels of the treatment group at week-2, -4 and -6 were not significantly different along with the period, suggesting that the effectiveness of HA administration is consistent throughout weeks-2, -4, and -6.(23)

Conclusion

Since bioscrew of green mussel shell-derived HA, PCL and PLA could increase the P1NP associated early matrix synthesis, and ALP associated with later-stage mineralization, it can be concluded that bioscrew of green mussel shell-derived HA, PCL and PLA can be a promising material to promote bone repair.

Table 2. ALP level of treatment and control groups.

Assessment Time	ALP Level (μg/dL)		<i>p</i> -value
	Treatment Group	Control Group	
Week-2	152.96±16.19	100.79±39.81	0.014 ^{b,*}
Week-4	124.09±48.12	129.35±54.73	0.749 ^a
Week-6	164.89±26.74	101.47±41.19	0.025 ^{a,*}
<i>p</i> -value	0.301 ^c	0.614 ^c	

^aMann-Whitney; ^bIndependent-t; ^cRepeated ANOVA.

Acknowledgments

The authors would like to express acknowledgement to Universitas Diponegoro for funding and support in carrying out this study. All the authors declare that there are no conflicts of interest.

Authors Contribution

KDA, EAN, MH, and RN were involved in conceiving the research and performed the data acquisition along with DRP. Data analysis was done by YN, KCT, DRPR and FS. KCT, DRP, FM and FS aided in result interpretation and manuscript preparation. KCT and FS designed the figures and tables. All authors contributed in providing critical revision of the manuscript.

Conflict of Interest

The authors declare no conflicts of interest or competing interests related to the content of this manuscript.

References

1. GBD 2019 Fracture Collaborators. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: A systematic analysis from the Global Burden of Disease Study 2019. *Lancet Healthy Longev.* 2021; 2(9): e580-92.
2. Jackson J, Halim J, Anggraeni R, Sandra F. Bone resorption in ameloblastoma and its underlying mechanism. *Indones J Cancer Chemoprevent.* 2021; 12(1): 57-66.
3. Noorisa R, Apriliwati D, Aziz A, Bayusentono S. The characteristic of patients with femoral fracture in Department of Orthopaedic and Traumatology RSUD Dr. Soetomo Surabaya 2013–2016. *J Orthop Traumatol Surabaya.* 2019; 6(1): 1-11.
4. Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. *Acta Biomater.* 2007; 3(6): 910-8.
5. Dorozhkin SV. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. *J Funct Biomater.* 2015; 6(3): 708-832.
6. Sandra F, Rizal MI, Dewi NM, Kukita T. Caffeic acid inhibits swelling, bone loss, and osteoclastogenesis in adjuvant-induced arthritis rats. *Indones Biomed J.* 2022; 14(3): 276-81.
7. Sandra F, Kukita T, Tang QY, Iijima T. Caffeic acid inhibits NFκB activation of osteoclastogenesis signaling pathway. *Indones Biomed J.* 2011; 3(3): 216-22.
8. Rahmanisa S, Prajatelistia E, Wibowo I, Barlian A. 3D Biosilica scaffolds from Melophus sarasinorum and Xestospongia testudinaria Indonesian sponges are biocompatible for cell growth and differentiation of human wharton's jelly mesenchymal stem cell in bone tissue engineering. *Indones Biomed J.* 2022; 14(4): 382-92.
9. Irianto KA, Pribadi A, Irsyam IA, Kloping YP, Sindrawati O. A comparison of osteoblast cell proliferation and osteocalcin expression in cuttlefish bone and bovine bone xenograft. *Mol Cell Biomed Sci.* 2019; 3(2): 75-80.
10. Ketherin K, Sandra F. Osteoclastogenesis in periodontitis: Signaling pathway, synthetic and natural inhibitors. *Mol Cell Biomed Sci.* 2018; 2(1): 11-8.
11. Sandra F, Putri J, Limen H, Sarizta B. Caffeic acid inhibits RANKL and TNFα-induced osteoclastogenesis by targeting TAK1-p44/42 MAPK. *Indones Biomed J* 2021; 13(4): 433-7.
12. Sandra F, Briskila J, Ketherin K. RANKL and TNF-α-induced JNK/SAPK osteoclastogenic signaling pathway was inhibited by caffeic acid in RAW-D cells. *Indones J Cancer Chemoprevent.* 2018; 9(2): 63-7.
13. Budaya TN, Daryanto B, Seputra KP, Fabrianta DM, Ekaputra AA, Dewi RRK, et al. SARM Rad140 increases osteoblasts, muscle fiber size, myonuclei, and reduces osteoclasts in orchidectomized wistar rats. *Mol Cell Biomed Sci.* 2025; 9(1): 30-8.
14. Lio TMP, Wibowo H, Sadikin M, Jusman SWA. Lower IGF-1 and alkaline phosphatase activity blood levels in stunted children with soil-transmitted helminth infections. *Indones Biomed J.* 2025; 17(2): 154-61.
15. Patandung J, Yustisia I, Natzir R, Soraya GV, Hafiyani L, Sulfahri S. The powdered red macroalgae (*Eucheuma spinosum*) supplementation potentially enhanced bone structure in osteoporotic mice. *Indones Biomed J.* 2024; 16(2): 144-51.
16. Ismail R, Cionita T, Lai YL, Fitriyana DF, Siregar JP, Bayuseno AP, et al. Characterization of PLA / PCL / green mussel shells hydroxyapatite (HA) biocomposites prepared by chemical blending methods. *Materials.* 2022; 15(23): 8641. doi: 10.3390/ma15238641.
17. Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. *Bioresour Technol.* 2010; 101(22): 8493-501.
18. Hlaing TT, Compston JE. Biochemical markers of bone turnover - uses and limitations. *Ann Clin Biochem.* 2014; 51(Pt 2): 189-202.
19. Aufderklamm S, Hennenlotter J, Rausch S, Bock C, Erne E, Schwentner C, et al. Oncological validation of bone turnover markers c-terminal telopeptide of type I collagen (1CTP) and peptides n-terminal propeptide of type I procollagen (P1NP) in patients with prostate cancer and bone metastases. *Transl Androl Urol.* 2021; 10(10): 4000-8.
20. Bakici C, Akgun RO, Ekim O, Batur B, Bakici M, Ozen D, et al. Three dimensional modeling and quantitative analysis of long bone parameters of rabbit using micro-computed tomography. *Iran J Vet Res.* 2021; 22(2): 140-5.
21. Tjandra KC, Novriansyah R, Limjadi EKS, Kuntjoro L, Hendrianingtyas M. The effect of green mussel (*Perna viridis*) shells' hydroxyapatite application on alkaline phosphatase levels in rabbit femur bone defect. *F1000Res.* 2024; 12: 631. doi: 10.12688/f1000research.132881.2.
22. Rathwa HS, Verma T, Chavali VH. Assessment of union in fracture. Role of Serum Alkaline Phosphatase and Ultrasonography. *J Clin Orthop Trauma.* 2021; 14: 94-100.
23. Saad MA, Aboelwafa RA, Elsayed EH. Could procollagen type I N-terminal propeptide (PINP) and bone alkaline phosphatase (B-ALP) be valid alternative diagnostic markers to dual X-ray absorptiometry (DEXA) in elderly females with osteoporosis? An Egyptian radiological and laboratory monocentric study. *Egypt Rheumatol Rehabil.* 2021; 48: 20. doi: 10.1186/s43166-021-00069-y.
24. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. *J Nippon Med Sch.* 2010; 77(1): 4-12.