MTHFR C677T and TS 5’-UTR 3R/3R Gene Polymorphism in Methotrexate-Resistant Childhood Acute Lymphoblastic Leukemia

I Dewa Gede Ugrasena, Harianto Notopuro, Subijanto Marto Sudarmo, Ketut Sudiana, Djajadiman Gatot, Ponpon Idjradinata

Abstract


BACKGROUND: Childhood acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy in Indonesia and often treated by methotrexate (MTX). Though it can be cured in 30-60% of patients, MTX resistance remains the major cause of treatment failure in childhood ALL. Previous sudies showed that its anti-leukemic property was moderated by MTX ability to inhibitmethylene tetra hydrofolate reductase (MTHFR) and thymidylate synthase (TS) in folate metabolism. This study investigates the correlation between MTHFR and TS polymorphism and MTX resistance in ALL children.

METHODS: A total of 155 subjects obtained from all subjects prior to chemotherapy. DNA from blood samples were extracted and underwent polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) to evaluate MTHFR C677T and TS 5’-UTR 3R/3R polymorphism.

RESULTS: There was significant correlation between MTHFR C677T and TS 5’-UTR 3R/3R gene polymorphism with MTX resistance. Subjectswith MTHFR C677T and TS 5’-UTR 3R/3R gene polymorphism were 4 times (p=0.007) and 6.4 times (p=0.001) more likely to be MTX resistant than those without gene polymorphisms, respectively.

CONCLUSION: MTHFR C677T andTS 5’-UTR 3R/3R represent dominant gene polymorphism related to MTX resistance in childhood ALL.

KEYWORDS: gene polymorphism, folate metabolism, acute lymphoblastic leukemia


Full Text:

PDF

References


Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012; 120: 1165-74, CrossRef.

Pui CH, Campana D. New definition of remission in childhood acute lymphoblastic leukemia. Leukemia. 2000; 14: 783-5, CrossRef.

Carroll WL, Bhojwani D, Min DJ, Raetz E, Relling M, Davies S, et al. Pediatric acute lymphoblastic leukemia. Hematology. 2003; 2003: 102-31, CrossRef.

Poplack DG. Acute lymphoblastic leukemia. In: Pizzo PA, Poplack DG, editors. Principles and Practice of Pediatric Oncology. 5th edition. Philadelphia: Lippincott Williams & Wilkins; 2006. p.323-66, NLMID.

Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Möricke A, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013; 121: 5145-53, CrossRef.

de Beaumais TA, Jacqz-Aigrain E. Intracellular disposition of methotrexate in acute lymphoblastic leukemia in children. Curr Drug Metab. 2012; 13: 822-34, CrossRef.

Chiusolo P, Reddiconto G, Cimino G, Sica S, Fiorini A, Farina G, et al. Methylenetetrahydrofolate reductase genotypes do not play a role in acute lymphoblastic leukemia pathogenesis in the Italian population. Haematologica. 2004; 89: 139-44, PMID.

Kaufman Y, Drori S, Cole PD, Kamen BA, Sirota J, Ifergan I, et al. Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer. 2004; 100: 773-82, CrossRef.

Schnakenberg E, Mehles A, Cario G, Rehe K, Seidemann K, Schlegelberger B, et al. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population. BMC Med Genet. 2005; 6: 23, CrossRef.

Umerez M, Gutierrez-Camino Á, Muñoz-Maldonado C, Martin-Guerrero I, Garcia-Orad A. MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med. 2017; 10: 69-78, CrossRef.

Chatzidakis K, Goulas A, Athanassiadou-Piperopoulou F, Fidani L, Koliouskas D, Mirtsou V. Methylenetetrahydrofolate reductase C677T polymorphism: Association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in greek patients. Pediatr Blood Cancer. 2006; 47: 147-51, CrossRef.

Ugrasena I, Sutaryo S, Supriadi E, Vroling L, Cloos J, Hooijberg JH, et al. High frequency of the 3R/3R polymorphism in the thymidylate synthase enhancer region in Indonesian childhood acute lymphoblastic leukemia. Paediatr Indones. 2016; 46: 103-12, CrossRef.

Giovannetti E, Ugrasena DG, Supriyadi E, Vroling L, Azzarello A, de Lange D, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase promoter (TSER) polymorphisms in Indonesian children with and without leukemia. Leuk Res. 2008; 32: 19-24, CrossRef.

Unit Koordinasi Kerja (UKK) Hematologi-Onkologi Ikatan Dokter Anak Indonesia. Panduan Protokol Nasional Leukemia Limfoblastik Akut 2013. [Unpublished Material].

Gervasini G, Vagace JM. Impact of genetic polymorphisms on chemotherapy toxicity in childhood acute lymphoblastic leukemia. Front Genet. 2012; 3: 249, CrossRef.

Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJP, Kazemier KM, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004; 351: 533-42, CrossRef.

Chessells JM, Richards SM, Bailey CC, Lilleyman JS, Eden OB. Gender and treatment outcome in childhood lymphoblastic leukaemia: report from the MRC UKALL trials*. Br J Haematol. 1995; 89: 364-72, CrossRef.

Kanerva J. Prognostic Factors in Childhood Acute Lymphoblastic Leukemia (ALL). Helsinki: University of Helsinki; 2001.

Gorlick R, Goker E, Trippett T, Waltham M, Banerjee D, Bertino JR. Intrinsic and acquired resistance to methotrexate in acute leukemia. N Engl J Med. 1996; 335: 1041-8, CrossRef.

Zhao R, Assaraf YG, Goldman ID. A reduced folate carrier mutation produces substrate-dependent alterations in carrier mobility in murine leukemia cells and methotrexate resistance with conservation of growth in 5-formyltetrahydrofolate. J Biol Chem. 1998; 273: 7873-9, CrossRef.

Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995; 10: 111-3, CrossRef.

Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998; 64: 169-72, CrossRef.

van der Put NM, Gabreëls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998; 62: 1044-51, CrossRef.

Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001; 22: 195-201, CrossRef.

Toffoli G, Russo A, Innocenti F, Corona G, Tumolo S, Sartor F, et al. Effect of methylenetetrahydrofolate reductase 677C-->T polymorphism on toxicity and homocysteine plasma level after chronic methotrexate treatment of ovarian cancer patients. Int J cancer. 2003; 103: 294-9, CrossRef.

Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J, et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood. 2001; 98: 231-4, CrossRef.

Taub JW, Matherly LH, Ravindranath Y, Kaspers GJL, Rots MG, Zantwijk CH. Polymorphisms in methylenetetrahydrofolate reductase and methotrexate sensitivity in childhood acute lymphoblastic leukemia. Leukemia. 2002; 16: 764-5, CrossRef.

Chiusolo P, Reddiconto G, Casorelli I, Laurenti L, Sorà F, Mele L, et al. Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol Off J Eur Soc Med Oncol. 2002; 13: 1915-8, CrossRef.

Ulrich CM, Robien K, McLeod HL. Cancer pharmacogenetics: polymorphisms, pathways and beyond. Nat Rev Cancer. 2003; 3: 912-20, CrossRef.

Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, Greaves MF, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA. 2001; 98: 4004-9, CrossRef.

Aplenc R, Thompson J, Han P, La M, Zhao H, Lange B, et al. Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res. 2005; 65: 2482-7, CrossRef.

Krajinovic M, Lemieux-Blanchard E, Chiasson S, Primeau M, Costea I, Moghrabi A. Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2004; 4: 66-72, CrossRef.

Cole PD, Drachtman RA, Smith AK, Cate S, Larson RA, Hawkins DS, et al. Phase II trial of oral aminopterin for adults and children with refractory acute leukemia. Clin Cancer Res. 2005; 11: 8089-96, CrossRef.

Kawakami K, Omura K, Kanehira E, Watanabe Y. Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anticancer Res. 1999; 19: 3249-52, PMID.

Krajinovic M, Costea I, Chiasson S. Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet. 2002; 359: 1033-4, CrossRef.

Wojtuszkiewicz A, Peters GJ, van Woerden NL, Dubbelman B, Escherich G, Schmiegelow K, et al. Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia. J Hematol Oncol. 2015; 8: 61, CrossRef.




DOI: https://doi.org/10.18585/inabj.v12i2.1109

Indexed by:

                 

                  

               

     

 

The Prodia Education and Research Institute