Staphylococcus aureus and Pseudomonas aeruginosa in Tubotympanic Chronic Suppurative Otitis Media Patients in Purwokerto, Indonesia

Daniel Joko Wahyono, Anton Budhi Darmawan, Leader Alfason, Reinhard Simbolon, Siwi Pramatama Mars Wijayanti, Wisiva Tofriska Paramaiswari, Korrie Salsabila, Dodi Safari

Abstract


BACKGROUND: Chronic Suppurative Otitis Media (CSOM) causes hearing impairment and frequently occurred in low-income country where medical care and personal hygiene are poor. Staphylococcus aureus and Pseudomonas aeruginosa are the most common cause of CSOM. We investigated prevalence and antimicrobial susceptibility of S. aureus and P. aeruginosa from tubotympanic CSOM patients in tertiary hospital, Purwokerto, Indonesia in 2016-2017.

METHODS: Ear swab specimens were collected from patients with tubotympanic CSOM. S. aureus and P. aeruginosa were isolated and identified by culture, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and molecular tools. Antimicrobial susceptibility testing was performed using the disk diffusion method.

RESULTS: Out of ear swabs from 34 patients with tubotympanic CSOM, P. aeruginosa and S. aureus were identified in 35%patients. No Methicillin-resistant S. aureus (MRSA) strain was found from the ear swabs of the patients with tubotympanic CSOM. Bacterial identification using the MALDI-TOF MS was concordantly with culture and molecular tools. All S. aureus isolates showed full susceptibility to cefoxitin and trimethoprim-sulphamethoxazole. Resistance to tetracycline was common with only 64% of S. aureus strains being susceptible. Meanwhile, all P. aeruginosa strains were susceptible to cefepime, cetazidime, meropenem, gentamicin, and tobramycin.

CONCLUSION: S. aureus and P. aeruginosa are found in patients with tubotympanic CSOM and still susceptible to different antibiotic agents. MALDI-TOF MS demonstrate rapid, accurate and robust to detect S. aureus and P. aeruginosa.

KEYWORDS: Staphylococcus aureus, Pseudomonas aeruginosa, chronic tubotympanic suppurative otitis media


Full Text:

PDF

References


Organisati A, Li MG, Hotez PJ, Vrabec JT, Donovan DT. Is chronic suppurative otitis media a neglected tropical Disease? PLoS Negl Trop Dis. 2015; 9: e0003485, CrossRef.

Park M, Lee JS, Lee JH, Oh SH, Park MK. Prevalence and risk factors of chronic otitis media: The Korean National Health and Nutrition Examination Survey 2010–2012. PLoS One. 2015; 10: e0125905, CrossRef.

Rout M, Susritha K, Das P, Jyothi BS, Mohanty D, Rao V. Ossicular chain defects in safe type of chronic suppurative otitis media. Indian J Otol. 2014; 20: 102-5, CrossRef.

Mittal R, Lisi CV, Gerring R, Mittal J, Mathee K, Narasimhan G, et al. Current concepts in the pathogenesis and treatment of chronic suppurative otitis media. J Med Microbiol. 2015; 64: 1103-16, CrossRef.

Anggraeni R, Carosone-Link P, Djelantik B, Setiawan EP, Hartanto WW, Ghanie A, et al. Otitis media related hearing loss in Indonesian school children. Int J Pediatr Otorhinolaryngol. 2019; 125: 44-50, CrossRef.

Gellatly SL, Hancock REW. Pseudomonas aeruginosa : new insights into pathogenesis and host defenses. Pathog Dis. 2013; 67: 159-73, CrossRef.

Uddén F, Filipe M, Reimer Å, Paul M, Matuschek E, Thegerström J, et al. Aerobic bacteria associated with chronic suppurative otitis media in Angola. Infect Dis Poverty. 2018; 7: 42, CrossRef.

Rangaiah ST, Dudda R, Prasad MH, Balaji NK, B. S, Gudikote MM. Bacteriological profile of chronic suppurative otitis media in a tertiary care hospital. Int J Otorhinolaryngol Head Neck Surg. 2017; 3: 601-5, CrossRef.

Darmawan AB, Soesatyo MHNE, Restuti RD, Surono A. The role of mannose-binding lectin serum level in tubotympanic chronic suppurative otitis media. Int J Otolaryngol. 2018; 2018: 6178159, CrossRef.

Juyal D, Negi V, Pal S, Adekhandi S, Sharma M, Sharma N, et al. Microbiology of chronic suppurative otitis media in a tertiary care setup of Uttarakhand state, India. North Am J Med Sci. 2013; 5(4): 282-7, CrossRef.

Satzke C, Turner P, Virolainen-Julkunen A, Adrian PV, Antonio M, Hare KM, et al. Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: Updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. Vaccine. 2013; 32: 165-79, CrossRef.

da Gloria Carvalho M, Pimenta FC, Jackson D, Roundtree A, Ahmad Y, Millar EV, et al. Revisiting pneumococcal carriage by use of broth enrichment and PCR techniques for enhanced detection of carriage and serotypes. J Clin Microbiol. 2010; 48: 1611-8, CrossRef.

Kawamura Y, Hou XG, Sultana F, Hirose K, Miyake M, Shu SE, et al. Distribution of Staphylococcus species among human clinical specimens and emended description of Staphylococcus caprae. J Clin Microbiol. 1998; 36: 2038-42, CrossRef.

Sutter VL. Identification of Pseudomonas species isolated from hospital environment and human sources. Appl Microbiol. 1968; 16: 1532-8, CrossRef.

Suryatenggara AN, Khoeri MM, Waslia L, Tafroji W, Kumalawati J, Subekti D, et al. Identification and antibiotic susceptibility of methicillin-resistant staphylococcus aureus strains collected at a referral hospital, Jakarta, Indonesia in 2013. Southeast Asian J Trop Med Public Health. 2013; 49: 1053-9, article.

Nelwan EJ, Sinto R, Subekti D, Adiwinata R, Waslia L, Loho T, et al. Screening of methicillin-resistant Staphylococcus aureus nasal colonization among elective surgery patients in referral hospital in Indonesia. BMC Res Notes. 2018; 11: 56, CrossRef.

Altaai M, Aziz I, Marhoon A. Identification Pseudomonas aeruginosa by 16s rRNA gene for differentiation from other Pseudomonas species that isolated from patients and environment. Baghdad Sci J. 2014; 11: 1028-34, CrossRef.

Galkiewicz JP, Kellogg CA. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl Environ Microbiol. 2008; 74: 7828-31, CrossRef.

Wu W, Jin Y, Bai F, Jin S. Pseudomonas aeruginosa. In: Molecular Medical Microbiology. Cambridge: Academic Press; 2015. p. 753-67, CrossRef.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. Wayne: Clinical and Laboratory Standards Institute; 2019, article.

DeLeon S, Clinton A, Fowler H, Everett J, Horswill AR, Rumbaugh KP. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect Immun. 2014; 82: 4718-28, CrossRef.

Mittal R, Debs LH, Patel AP, Nguyen D, Blackwelder P, Yan D, et al. Otopathogenic Staphylococcus aureus invades human middle ear epithelial cells primarily through cholesterol dependent pathway. Sci Rep. 2019; 9: 10777, CrossRef.

Juyal D, Sharma M, Negi V, Prakash R, Sharma N. Pseudomonas aeruginosa and its sensitivity spectrum in chronic suppurative otitis media: A study from Garhwal hills of Uttarakhand State, India. Indian J Otol. 2017; 23: 180-4, CrossRef.

Darmawan AB, Anjarwati DU. Perbedaan sensitivitas tetes telinga antibiotik terhadap Pseudomonas aeruginosa pada otitis media supuratif kronik. Oto Rhino Laryngol Indones 2012; 42: 77-82, CrossRef.

Pérez-Sancho M, Vela AI, Horcajo P, Ugarte-Ruiz M, Domínguez L, Fernández-Garayzábal JF, et al. Rapid differentiation of Staphylococcus aureus subspecies based on MALDI-TOF MS profiles. J Vet Diagn Invest. 2018; 30: 813-20, CrossRef.

Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015; 6: 791, CrossRef.

Hadi U, Duerink DO, Lestari ES, Nagelkerke NJ, Werter S, Keuter M, et al. Survey of antibiotic use of individuals visiting public healthcare facilities in Indonesia. Int J Infect Dis. 2008; 12: 622-9, CrossRef.

Kateete DP, Kimani CN, Katabazi FA, Okeng A, Okee MS, Nanteza A, et al. Identification of Staphylococcus aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Ann Clin Microbiol Antimicrob. 2010; 9: 23, CrossRef.

Wagner J, Short K, Catto-Smith AG, Cameron DJS, Bishop RF, Kirkwood CD. Identification and characterisation of pseudomonas 16S ribosomal DNA from ileal biopsies of children with Crohn’s disease. PLoS ONE. 2008; 3: e3578, CrossRef.

Cabrolier N, Sauget M, Bertrand X, Hocquet D. Matrix-assisted laser desorption ionization–time of flight mass spectrometry identifies Pseudomonas aeruginosa high-risk clones. J Clin Microbiol. 2015; 53: 1395-8, CrossRef.




DOI: https://doi.org/10.18585/inabj.v12i4.1218

Copyright (c) 2020 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                   

 

 

The Prodia Education and Research Institute