Gut Microbiota, Obesity and Metabolic Dysfunction

Anna Meiliana, Andi Wijaya

Abstract


BACKGROUND: The prevalence of obesity and related disorders such as metabolic syndrome and diabetes has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. This represents an area of scientific need, opportunity and challenge. The insights gleaned should help to address several pressing global health problems.

CONTENT: Our bowels have two major roles: the digestion and absorption of nutrients and the maintenance of a barrier against the external environment. They fulfill these functions in the context of, and with the help from, tens of trillions of resident microbes, known as the gut microbiota. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function.

SUMMARY: The interaction of the intestinal microbial world with its host, and its mutual regulation, will become one of the important topics of biomedical research and will provide us with further insights at the interface of microbiota, metabolism, metabolic syndrome, and obesity. A better understanding of the interaction between certain diets and the human gut microbiome should help to develop new guidelines for feeding humans at various time points in their life, help to improve global human health, and establish ways to prevent or treat various food-related diseases.

KEYWORDS: gut microbiota, obesity, metabolic syndrome, type 2 diabetes


Full Text:

PDF

References


Musso GS, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota. Diab Care. 2010; 33: 2277-84, CrossRef.

Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001; 292: 1115-8, CrossRef.

Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006; 124: 837-48, CrossRef.

Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009; 136: 65-80, CrossRef.

Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009; 7: 887-94, CrossRef.

Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004; 101: 15718-23, CrossRef.

Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005; 102: 11070-5, CrossRef.

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007; 449: 804-10, CrossRef.

Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009; 587: 4153-8, CrossRef.

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444: 1027-31, CrossRef.

Diamant M, Blaak EE, de Vos M. Do nutrient-gut-microbiota interaction play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev. 2011; 12: 272-81, CrossRef.

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006; 444: 1022-3, CrossRef.

Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA. 2002; 99: 15451-5, PMID.

Xu J, Gordon JI. Inaugural article: Honor thy symbionts. Proc Natl Acad Sci USA. 2003; 100: 10452-9, CrossRef.

Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002; 22: 283-307, CrossRef.

MacDonald TT, Gordon JN. Bacterial regulation of intestinal immune responses. Gastroenterol Clin North Am. 2005; 34: 401-12, CrossRef.

Simpson S, Ash C, Pennisi E, Travis J. The gut inside out. Science. 2005; 307: 1895, CrossRef.

Zoetendal EG, Vaughan EE, ve Vos WM. A microbial world within us. Mol Microbiol. 2006; 59: 1639-50, CrossRef.

Marchesi J, Shanahan F. The normal intestinal microbiota. Curr Opin Infect Dis. 2007; 20: 508-13, CrossRef.

Hooper LV, Bry L, Falk PG, Gordon JI. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays. 1998; 20: 336-43, CrossRef.

Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001; 81: 1031-64, PMID.

Bergman E. Energy contribution of volitile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990; 70: 567-90, PMID.

Wachtershauser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr 2000;3 9: 164-71, CrossRef.

Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008; 27: 104-19, CrossRef.

Kumar A, Wu H, Collier-Hyams LS, Kwon YM, Hanson JM, Neish AS. The bacterial fermentation product butyrate influences epithelial signaling via ROS mediated changes in Cullin-1 neddylation. J Immunol. 2009; 182: 538-46, CrossRef.

Vernia P, Annese V, Bresci G, d'Albasio G, D'Incà R, Giaccari S, et al. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. Eur J Clin Invest. 2003; 33: 244-8, CrossRef.

Gueimonde M, Sakata S, Kalliomäki M, Isolauri E, Benno Y, Salminen S. Effect of maternal consumption of lactobacillus GG on transfer and establishment of fecal bifidobacterial microbiota in neonates. J Ped Gastroenterol Nutr 2006; 42: 166-70, CrossRef.

Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP. Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol. 2010; 2: 53-66, CrossRef.

Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA. 2008; 105: 18964-9, CrossRef.

Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5: e177, CrossRef.

Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 2007; 14: 169-81, CrossRef.

Dethlefsen L, Eckburg PB, Bik EM, Relman DA. Assembly of the human intestinal microbiota. Trends Ecol Evol. 2006; 21: 517-23, CrossRef.

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci. 2011; 108 (Suppl 1): 4578-85, CrossRef.

Gophna U. The guts of dietary habits. Science 2011; 334: 45-6, CrossRef.

Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009; 1: 6ra14, CrossRef.

Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol. 2011; 61: 423-8, CrossRef.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long term dietary patterns with gut microbial enterotypes. Science. 2011; 334: 105-8, CrossRef.

Faith JJ, McNutty NP, Rey FE, Gordon JI. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science. 2011; 333: 101-4, CrossRef.

Johansson MEV, Hansson GC. Keeping bacteria at a distance. Science. 2011; 334: 182-3, CrossRef.

Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. 2008; 10: 15064-9, CrossRef.

Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008; 1: 11-22, CrossRef.

Hooper LV. Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol. 2009; 7: 367-74, CrossRef.

Boman HG. Innate immunity and the normal microflora. Immunol Rev. 2000; 173: 5-16, CrossRef.

Dann SM, Eckmann L. Innate immune defenses in the intestinal tract. Curr Opin Gastroenterol. 2007; 23:115-20, CrossRef.

Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009; 9: 799-809, CrossRef.

Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005; 307:1915-1920, CrossRef.

McGuckin MA, Linden SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011; 9: 265-78, CrossRef.

Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, the outer layer is a legislator of host - microbial interaction. Proc Natl Acad Sci USA. 2011; 108 (Suppl 1): 4659-65, CrossRef.

Stappenbeck TS. Paneth cell development, differentiation, and function: new molecular cues. Gastroenterology. 2009; 137: 30-3, CrossRef.

Tomasetto C, Masson R, Linares JL, Wendling C, Lefebvre O, Chenard MP, et al. pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology. 2000; 118: 70-80, CrossRef.

Newton JL, Allen A, Westley BR, May FE. The human trefoil peptide, TFF1, is present in different molecular forms that are intimately associated with mucus in normal stomach. Gut. 2000; 46: 312-20, CrossRef.

Ruchaud-Sparagano MH, Westley BR, May FE. The trefoil protein TFF1 is bound to MUC5AC in human gastric mucosa. Cell Mol Life Sci. 2004; 61: 1946-54, CrossRef.

Kindon H, Pothoulakis C, Thim L, Lynchdevaney G, Podolsky DK. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 1995; 109: 516-23, CrossRef.

Thim L, Madsen F, Poulsen SS. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur. J. Clin. Invest. 2002; 32: 519-527, CrossRef.

Ouellette AJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol. 2010; 26: 547-53, CrossRef.

Porter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci. 2002; 59: 156-70, CrossRef.

White SH, Wimley WC, Selsted ME. Structure, function, and membrane integration of defensins. Curr. Opin Struct Biol. 1995; 5: 521-7, CrossRef.

Hristova K, Selsted ME, White SH. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J Biol Chem. 1997; 272: 24224-33, CrossRef.

Bevin CL, Salzman NH. Paneth cels, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011; 9: 356-68, CrossRef.

Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjöberg J, Amir E, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol. 2010; 11: 76-82, CrossRef.

Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL, et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999; 286: 113-7, CrossRef.

Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 2003; 422: 522-6, CrossRef.

Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genet. 2007; 39: 596-604, CrossRef.

Simms LA, Doecke JD, Roberts RL, Fowler EV, Zhao ZZ, McGuckin MA, et al. KCNN4 gene variant is associated with ileal Crohn’s Disease in the Australian and New Zealand population. Am J Gastroenterol. 2010; 105: 2209-17, CrossRef.

Hugot JP, Chamaillard M, Zouali H, Lesage S, Céard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001; 411: 599-603, CrossRef.

Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001; 411: 603-6, CrossRef.

Wehkamp J, Wang G, Küler I, Nuding S, Gregorieff A, Schnabel A, et al. The Paneth cell α-defensin deficiency of ileal Crohn’s disease is linked to Wnt/ Tcf-4. J Immunol. 2007; 179: 3109-318, CrossRef.

Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008; 134: 743-56, CrossRef.

Zheng W, Rosenstiel P, Huse K, Sina C, Valentonyte R, Mah N, et al. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun. 2006; 7: 11-8, CrossRef.

Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG, Ouellette AJ. Modulation of mouse Paneth cell α-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J Biol Chem. 2002; 277: 3793-800, CrossRef.

Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñz G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 307: 731-4, CrossRef.

Biswas A, Liu YJ, Hao L, Mizoguchi A, Salzman NH, Bevins CL, et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci USA. 2010; 107: 14739-44, CrossRef.

van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, et al. Wnt signaling induces maturation of Paneth cells in intestinal crypts. Nature Cell Biol. 2005; 7: 381-6, CrossRef.

Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16L1 in mouse and human intestinal Paneth cells. Nature. 2008; 456: 259-63, CrossRef.

Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010; 141: 1135-45, CrossRef.

Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011; 334: 255-8, CrossRef.

Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010; 330: 1768-73, CrossRef.

Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011; 474: 298- 306, CrossRef.

Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Rev Immunol. 2008; 8: 411-20, CrossRef.

Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev Immunol. 2010; 10: 159-69, CrossRef.

Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011; 332: 970-4, CrossRef.

Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA. 2011; 108: 6252-7, CrossRef.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457: 480-4, CrossRef.

Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009; 106: 3698-703, CrossRef.

Martin FP, Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol. 2008; 4: 157, CrossRef.

Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474: 327-36, CrossRef.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65, CrossRef.

Lupton JR. Microbial degradation products influence colon cancer risk: the butyrate controversy. J Nutr. 2004; 134: 479-82, PMID.

Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR, et al. Helper T cell differentiation is controlled by the cell cycle. Immunity. 1998; 9: 229-37, CrossRef.

Peng L, He Z, Chen W, Holzman IR, Lin J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res. 2007; 61: 37-41, CrossRef.

Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009; 461: 1282-6, CrossRef.

Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007; 282: 35279-92, CrossRef.

Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006; 440: 228-32, CrossRef.

Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nature Rev Immunol. 2009; 9: 324-37, CrossRef.

Nakamura T, Furuhashi M, Li P, Cao H, Tuncman G, Sonenberg N, et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell. 2010; 140: 338-48, CrossRef.

Stockinger B. Beyond toxicity: aryl hydrocarbon receptormediated functions in the immune system. J Biol. 2009; 8: 61, CrossRef.

Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nature Rev Immunol. 2006; 6: 44-55, CrossRef.

Esser C, Rannug A, Stockinger B. The aryl hydrocarbon receptor in immunity. Trends Immunol. 2009; 30: 447-54, CrossRef.

Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010; 185: 3190-8, CrossRef.

Platzer B, Richter S, Kneidinger D, Waltenberger D, Woisetschläger M, Strobl H. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. J Immunol. 2009; 183: 66-74, CrossRef.

Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008; 453: 65-71, CrossRef.

Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008; 453: 106-9, CrossRef.

Allen RH, StablerSP. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am J Clin Nutr. 2008; 87: 1324-35, PMID.

Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe. 2009; 6: 279-89, CrossRef.

Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312: 1355-9, CrossRef.

Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestineadapted bacterialsymbiont. Science. 2005; 307: 1955-9, CrossRef.

Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol. 2002; 13: 471-81, CrossRef.

Bergö M, Olivecrona G, Olivecrona T. Forms of lipoprotein lipase in rat tissues: in adipose tissue the proportion of inactive lipase increases on fasting. Biochem J. 1996; 313: 893-8, CrossRef.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308: 1635-8, CrossRef.

Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008; 3: e2836, CrossRef.

Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008; 6: e280, CrossRef.

Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr. 2010; 104: 919-29, CrossRef.

Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009; 137: 1716-24.e2, CrossRef.

Tilg H, kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011; 121: 2126-32, CrossRef.

Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010; 141: 1241-1252, CrossRef.

Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol. 2008; 8: 923-34, CrossRef.

Shoelson SE, Goldfine AB. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nat Med. 2009; 15: 373-4, CrossRef.

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56: 1761-72, CrossRef.

Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007; 50: 2374-83, CrossRef.

Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008; 57: 1470-81, CrossRef.

Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009; 15: 1546-58, CrossRef.

Lambert DM, Muccioli GG. Endocannabinoids and related N-acylethanolamines in the control of appetite and energy metabolism: emergence of new molecular players. Curr Opin Clin Nutr Metab Care. 2007; 10: 735-44, CrossRef.

Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008; 7: 438-55, CrossRef.

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003; 112: 1796-1808, CrossRef.

Muccioli GG, Naslain D, Backhed F, Reigstad C, Lambert DM, Delsenne N, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010; 6: 1-15, CrossRef.

Alhamoruni A, Lee AC, Wright KL, Larvin M, O’Sullivan SE. Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability. J Pharmacol Exp Ther. 2010; 335: 92-102, CrossRef.

Cani PD, Delzenne NM. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol. 2009; 9: 737-43, CrossRef.

Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006; 6: 772-83, CrossRef.

Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 2008; 22: 2416-26, CrossRef.

Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet- induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007; 104: 979-84, CrossRef.

Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, et al. Interaction between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010; 4: 232-41, CrossRef.

Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010; 328: 228-31, CrossRef.

Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131: 33-45, CrossRef.

De Kort S, Keszthelyi D, Masclee AM. Leaky gut and diabetes mellitus: what is the link? Obes Rev 2011; 12: 449-58, CrossRef.

Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut. 2006; 55: 1512-20, CrossRef.

Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 2009; 1: a002584, CrossRef.

Tiittanen M, Paronen J, Savilahti E, Virtanen SM, Ilonen J, Knip M, et al. Dietary insulin as an immunogen and tolerogen. Pediatr Allergy Immunol. 2006; 17: 538-43, CrossRef.

Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP- 2-driven improvement of gut permeability. Gut. 2009; 58: 1091-103, CrossRef.

Loscalzo J. Lipid metabolism by gut microbes and atherosclerosis. Circ Res. 2011; 109: 127-9, CrossRef.

Goodman AL, Gordon JI. Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab. 2010; 12: 111-6, CrossRef.

Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA. 2006; 103: 12511-6, CrossRef.

Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977; 31: 107-33, CrossRef.

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011; 73: 174-80, CrossRef.

Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, e al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res. 2010; 51: 1101-12, CrossRef.

Backhed F, Crawford PA. Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochim Biophys Acta. 2010; 1801: 240-5, CrossRef.

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472: 57-63, CrossRef.

Rak K, Rader DJ. Cardivascular disease: The diet-microbe morbid union. Nature 2011; 472: 40-1, CrossRef.

Zeisel SH, Mar MH, Howe JC, Holden JM. Concentrations of choline-containing compounds and betaine in common foods. Nature. 2003; 133: 1302-7, PMID.

Reid G, Younes JA, van der Mei H, Gloor GB, Knight R, Busscher HJ. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol. 2011; 9: 27-38, CrossRef.

Reid, G. The importance of guidelines in the development and application of probiotics. Curr. Pharm. Des. 2005; 11: 11-6, CrossRef.

Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther. 2006; 24: 701-14, CrossRef.

Gibson GR, Roberfroid M. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995; 125: 1401-12, PMID.

Cani PD, Lecourt E, Dewulf E, Sohet FM, Pachikian BD, Naslain D, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut production woth consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009; 90: 1236- 43, CrossRef.

Cummings JH, Antoine JM, Azpiroz F, Bourdet-Sicard R, Brandtzaeg P, Calder PC, et al. Gut health and immunity. Eur J Nutr. 2004; 43: II/118-73, CrossRef.

Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991; 70: 443-59, CrossRef.

Gibson GR, McCartney AL, Rastall RA. Prebiotics and resistance to gastrointestinal infections. Br J Nutr 2005; 93: S31-4, CrossRef.

Food and Agriculture Organization of the United Nations and WHO. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Rome/Geneva: FAO/WHO; 2001, article.

Marco ML, Pavan S, Kleerebezem M. Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol. 2006; 17: 204-10, CrossRef.

Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, et al. Functional food science and gastrointestinal physiology and function. Br J Nutr. 1998; 80 (Suppl 1): 147-71, CrossRef.

Lebeer, S, Vanderleyden J, De Keersmaecker S. Genes and molecules of Lactobacillus supporting probiotic action. Microbiol Mol Biol Rev. 2008; 72: 728-64, CrossRef.

Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28: 405-40, CrossRef.

Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003; 52: 827-33, CrossRef.

Schlee M, Harder J, Köten B, Stange EF, Wehkamp J, Fellermann K. Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2. Clin Exp Immunol. 2008; 151: 528-35, CrossRef.

Schlee M, Wehkamp J, Altenhoefer A, Oelschlaeger TA, Stange EF, Fellermann K. Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun. 2007; 75: 2399-407, CrossRef.

Seth A, Yan F, Polk DB, Rao RK. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase- dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2008; 294: G1060-9, CrossRef.

Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 2007; 132: 562-75, CrossRef.

Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol. 2005; 115: 1260-7, CrossRef.

Goldin BR, Gorbach SL. Clinical indications for probiotics: an overview. Clin Infect Dis. 2008; 46: S96-100, CrossRef.




DOI: https://doi.org/10.18585/inabj.v3i3.147

Copyright (c) 2011 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                

 

 

The Prodia Education and Research Institute