Crucial Triad in Pulp-Dentin Complex Regeneration: Dental Stem Cells, Scaffolds, and Signaling Molecules

Ferry Sandra, Andri Sutanto, Widya Wulandari, Reynaldo Lambertus, Maria Celinna, Nurrani Mustika Dewi, Solachuddin Jauhari Arief Ichwan


BACKGROUND: Pulp damage can lead to dentinogenesis impairment, irreversible pulpitis, or pulp necrosis. Despite being the most used endodontic procedure to treat damaged pulp, root canal therapy only results in nonvital teeth which are prone to fractures and secondary infection. Pulp-dentin regeneration has a potential to regenerate structure similar to normal pulp-dentin complex, and can be achieved by combining dental stem cells, scaffold, and signaling molecules. This article reviews the role of various types of dental stem cells, scaffolds, signaling molecules, and their combinations in regenerating pulp-dentin complex.

CONTENT: Dental pulp stem cell (DPSC), stem cell from human exfoliated deciduous teeth (SHED), and dental follicle stem cell (DFSC) were reported to regenerate pulp-dentin complex in situ. SHED might be more promising than DPSCs and DFSCs for regenerating pulp-dentin complex, since SHED have a higher proliferation potential and higher expression levels of signaling molecules. Scaffolds have characteristics resembling extracellular matrix, thus providing a suitable microenvironment for transplanted dental stem cells. To accelerate the regeneration process, exogenous signaling molecules are often delivered together with dental stem cells. Scaffolds and signaling molecules have different regenerative potential, including induction of cell proliferation and migration, formation of pulp- and/or dentin-like tissue, as well as angiogenesis and neurogenesis promotion.

SUMMARY: Combinations of dental stem cells, scaffold, and signaling molecules are important to achieve the functional pulp-dentin complex formation. Current trends and future directions on regenerative endodontics should be explored. The right combination of dental stem cells, scaffold, and signaling molecules could be determined based on the patients’ characteristics. Incomplete pulp-dentin regeneration could be overcome by applying dental stem cells, scaffold, and/or signaling molecules in multiple visits.

KEYWORDS: pulp-dentin regeneration, regenerative endodontics, dental stem cells, scaffold, signaling molecules

Full Text:



Jakovljevic A, Nikolic N, Jacimovic J, Pavlovic O, Milicic B, Beljic-Ivanovic K, et al. Prevalence of apical periodontitis and conventional nonsurgical root canal treatment in general adult population: An updated systematic review and meta-analysis of cross-sectional studies published between 2012 and 2020. J Endod. 2020; 46(10): 1371-86.e8, CrossRef.

Sui B, Chen C, Kou X, Li B, Xuan K, Shi S, et al. Pulp stem cell-mediated functional pulp regeneration. J Dent Res. 2019; 98(1): 27-35, CrossRef.

Mao JJ, Kim SG, Zhou J, Ye L, Cho S, Suzuki T, et al. Regenerative endodontics: Barriers and strategies for clinical translation. Dent Clin North Am. 2012; 56(3): 639-49, CrossRef.

Xie Z, Shen Z, Zhan P, Yang J, Huang Q, Huang S, et al. Functional dental pulp regeneration: Basic research and clinical translation. Int J Mol Sci. 2021; 22(16): 8991, CrossRef.

Feter Y, Afiana NS, Chandra JN, Abdullah K, Shafira J, Sandra F. Dental mesenchymal stem cell: Its role in tooth development, types, surface antigens and differentiation potential. Mol Cell Biomed Sci. 2017; 1(2): 50-7, CrossRef.

Sandra F, Sudiono J, Feter Y, Afiana NS, Chandra JN, Abdullah K, et al. Investigation on cell surface markers of dental pulp stem cell isolated from impacted third molar based on International Society for Cellular Therapy proposed mesenchymal stem cell markers. Mol Cell Biomed Sci. 3(1): 1-6, CrossRef.

Wang Y, Zhao Y, Jia W, Yang J, Ge L. Preliminary study on dental pulp stem cell-mediated pulp regeneration in canine immature permanent teeth. J Endod. 2013; 39(2): 195-201, CrossRef.

Chen YJ, Zhao YH, Zhao YJ, Liu NX, Lv X, Li Q, et al. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin. Cell Tissue Res. 2015; 361(2): 439-55, CrossRef.

Jia W, Zhao Y, Yang J, Wang W, Wang X, Ling L, et al. Simvastatin promotes dental pulp stem cell-induced coronal pulp regeneration in pulpotomized teeth. J Endod. 2016; 42(7): 1049-54, CrossRef.

Ling L, Zhao YM, Wang XT, Wen Q, Ge LH. Regeneration of dental pulp tissue by autologous grafting stem cells derived from inflammatory dental pulp tissue in immature premolars in a Beagle dog. Chin J Dent Res. 2020; 23(2): 143-50, CrossRef.

Zhu X, Liu J, Yu Z, Chen CA, Aksel H, Azim AA, et al. A miniature swine model for stem cell-based de novo regeneration of dental pulp and dentin-like tissue. Tissue Eng Part C Methods. 2018; 24(2): 108-20, CrossRef.

Verma P, Nosrat A, Kim JR, Price JB, Wang P, Bair E, et al. Effect of residual bacteria on the outcome of pulp regeneration in vivo. J Dent Res. 2017; 96(1): 100-6, CrossRef.

Kuang R, Zhang Z, Jin X, Hu J, Shi S, Ni L, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater. 2016; 33: 225-34, CrossRef.

Cai S, Zhang W, Chen W. PDGFRβ+/c-kit+ pulp cells are odontoblastic progenitors capable of producing dentin-like structure in vitro and in vivo. BMC Oral Health. 2016; 16(1): 113, CrossRef.

Xia K, Chen Z, Chen J, Xu H, Xu Y, Yang T, et al. RGD- and VEGF-mimetic peptide epitope-functionalized self-assembling peptide hydrogels promote dentin-pulp complex regeneration. Int J Nanomedicine. 2020; 15: 6631-47, CrossRef.

Ishizaka R, Iohara K, Murakami M, Fukuta O, Nakashima M. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials. 2012; 33(7): 2109-18, CrossRef.

Murakami M, Imabayashi K, Watanabe A, Takeuchi N, Ishizaka R, Iohara K, et al. Identification of novel function of vimentin for quality standard for regenerated pulp tissue. J Endod. 2012; 38(7): 920-6, CrossRef.

Iohara K, Murakami M, Takeuchi N, Osako Y, Ito M, Ishizaka R, et al. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med. 2013; 2(7): 521-33, CrossRef.

Iohara K, Murakami M, Nakata K, Nakashima M. Age-dependent decline in dental pulp regeneration after pulpectomy in dogs. Exp Gerontol. 2014; 52: 39-45, CrossRef.

Murakami M, Hayashi Y, Iohara K, Osako Y, Hirose Y, Nakashima M. Trophic effects and regenerative potential of mobilized mesenchymal stem cells from bone marrow and adipose tissue as alternative cell sources for pulp/dentin regeneration. Cell Transplant. 2015; 24(9): 1753-65, CrossRef.

Iohara K, Fujita M, Ariji Y, Yoshikawa M, Watanabe H, Takashima A, et al. Assessment of pulp regeneration induced by stem cell therapy by magnetic resonance imaging. J Endod. 2016; 42(3): 397-401, CrossRef.

Iohara K, Utsunomiya S, Kohara S, Nakashima M. Allogeneic transplantation of mobilized dental pulp stem cells with the mismatched dog leukocyte antigen type is safe and efficacious for total pulp regeneration. Stem Cell Res Ther. 2018; 9(1): 116, CrossRef.

Iohara K, Zayed M, Takei Y, Watanabe H, Nakashima M. Treatment of pulpectomized teeth with trypsin prior to transplantation of mobilized dental pulp stem cells enhances pulp regeneration in aged dogs. Front Bioeng Biotechnol. 2020; 8: 983, CrossRef.

Zayed M, Iohara K, Watanabe H, Nakashima M. CCR3 antagonist protects against induced cellular senescence and promotes rejuvenation in periodontal ligament cells for stimulating pulp regeneration in the aged dog. Sci Rep. 2020; 10(1): 8631, CrossRef.

Zayed M, Iohara K, Watanabe H, Ishikawa M, Tominaga M, Nakashima M. Characterization of stable hypoxia-preconditioned dental pulp stem cells compared with mobilized dental pulp stem cells for application for pulp regenerative therapy. Stem Cell Res Ther. 2021; 12(1): 302, CrossRef.

Ziauddin SM, Nakashima M, Watanabe H, Tominaga M, Iohara K. Biological characteristics and pulp regeneration potential of stem cells from canine deciduous teeth compared with those of permanent teeth. Stem Cell Res Ther. 2022; 13(1): 439, CrossRef.

Xuan K, Li B, Guo H, Sun W, Kou X, He X, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med. 2018; 10(455): eaaf3227, CrossRef.

Guo H, Zhao W, Liu A, Wu M, Shuai Y, Li B, et al. SHED promote angiogenesis in stem cell-mediated dental pulp regeneration. Biochem Biophys Res Commun. 2020; 529(4): 1158-64, CrossRef.

Chen G, Chen J, Yang B, Li L, Luo X, Zhang X, et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials. 2015; 52: 56-70, CrossRef.

Meza G, Urrejola D, Saint Jean N, Inostroza C, López V, Khoury M, et al. Personalized cell therapy for pulpitis using autologous dental pulp stem cells and leukocyte platelet-rich fibrin: A case report. J Endod. 2019; 45(2): 144-9, CrossRef.

Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study. Stem Cell Res Ther. 2017; 8(1): 61, CrossRef.

Nakashima M, Fukuyama F, Iohara K. Pulp regenerative cell therapy for mature molars: A report of 2 cases. J Endod. 2022; 48(10): 1334-40.e1, CrossRef.

Kunimatsu R, Nakajima K, Awada T, Tsuka Y, Abe T, Ando K, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2018; 501(1): 193-8, CrossRef.

Shoi K, Aoki K, Ohya K, Takagi Y, Shimokawa H. Characterization of pulp and follicle stem cells from impacted supernumerary maxillary incisors. Pediatr Dent. 2014; 36(3): 79-84, article.

Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics. 2019; 9(9): 2694-711, CrossRef.

Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005; 24(2): 155-65, CrossRef.

Meiliana A, Dewi NM, Wijaya A. Mesenchymal stem cells manage endogenous tissue regeneration. Indones Biomed J. 2016; 8(2): 71-90, CrossRef.

Kwack KH, Lee JM, Park SH, Lee HW. Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating T cells to release transforming growth factor beta. J Endod. 2017; 43(1): 100-8, CrossRef.

Martinez VG, Ontoria-Oviedo I, Ricardo CP, Harding SE, Sacedon R, Varas A, et al. Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells. Stem Cell Res Ther. 2017; 8(1): 208, CrossRef.

Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010; 1(1): 5, CrossRef.

Gao X, Shen Z, Guan M, Huang Q, Chen L, Qin W, et al. Immunomodulatory role of stem cells from human exfoliated deciduous teeth on periodontal regeneration. Tissue Eng Part A. 2018; 24(17-18): 1341-53, CrossRef.

Silva Fde S, Ramos RN, de Almeida DC, Bassi EJ, Gonzales RP, Miyagi SP, et al. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) induce immune modulatory profile in monocyte-derived dendritic cells. PLoS One. 2014; 9(5): e98050, CrossRef.

Genç D, Zibandeh N, Nain E, Gökalp M, Özen AO, Göker MK, et al. Dental follicle mesenchymal stem cells down-regulate Th2-mediated immune response in asthmatic patients mononuclear cells. Clin Exp Allergy. 2018; 48(6): 663-78, CrossRef.

Chen X, Yang B, Tian J, Hong H, Du Y, Li K, et al. Dental follicle stem cells ameliorate lipopolysaccharide-induced inflammation by secreting TGF-β3 and TSP-1 to elicit macrophage M2 polarization. Cell Physiol Biochem. 2018; 51(5): 2290-308, CrossRef.

Han N, Zheng Y, Li R, Li X, Zhou M, Niu Y, et al. β-catenin enhances odontoblastic differentiation of dental pulp cells through activation of Runx2. PLoS One. 2014; 9(2): e88890, CrossRef.

Zhu X, Wang Y, Liu Y, Huang GT, Zhang C. Immunohistochemical and histochemical analysis of newly formed tissues in root canal space transplanted with dental pulp stem cells plus platelet-rich plasma. J Endod. 2014; 40(10): 1573-8, CrossRef.

Guo S, Guo W, Ding Y, Gong J, Zou Q, Xie D, et al. Comparative study of human dental follicle cell sheets and periodontal ligament cell sheets for periodontal tissue regeneration. Cell Transplant. 2013; 22(6): 1061-73, CrossRef.

Guo W, Gong K, Shi H, Zhu G, He Y, Ding B, et al. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials. 2012; 33(5): 1291-302, CrossRef.

Yamada Y, Nakamura-Yamada S, Umemura-Kubota E, Baba S. Diagnostic cytokines and comparative analysis secreted from exfoliated deciduous teeth, dental pulp, and bone marrow derived mesenchymal stem cells for functional cell-based therapy. Int J Mol Sci. 2019; 20(23): 5900, CrossRef.

Hilkens P, Fanton Y, Martens W, Gervois P, Struys T, Politis C, et al. Pro-angiogenic impact of dental stem cells in vitro and in vivo. Stem Cell Res. 2014; 12(3): 778-90, CrossRef.

Murakami M, Horibe H, Iohara K, Hayashi Y, Osako Y, Takei Y, et al. The use of granulocyte-colony stimulating factor induced mobilization for isolation of dental pulp stem cells with high regenerative potential. Biomaterials. 2013; 34(36): 9036-47, CrossRef.

Yu CY, Boyd NM, Cringle SJ, Alder VA, Yu DY. Oxygen distribution and consumption in rat lower incisor pulp. Arch Oral Biol. 2002; 47(7): 529-36, CrossRef.

Zaw SYM, Kaneko T, Zaw ZCT, Sone PP, Murano H, Gu B, et al. Crosstalk between dental pulp stem cells and endothelial cells augments angiogenic factor expression. Oral Dis. 2020; 26(6): 1275-83, CrossRef.

Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 2008; 26(7): 1787-95, CrossRef.

Morsczeck C, Völlner F, Saugspier M, Brandl C, Reichert TE, Driemel O, et al. Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig. 2010; 14(4): 433-40, CrossRef.

Chouw A, Triana R, Dewi NM, Darmayanti S, Rahman MN, Susanto A, et al. Ischemic stroke: New neuron recovery approach with mesenchymal and neural stem cells. Mol Cell Biomed Sci. 2018; 2(2): 48-54, CrossRef.

Feng X, Xing J, Feng G, Sang A, Shen B, Xu Y, et al. Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/β-catenin signaling. Cell Mol Neurobiol. 2013; 33(8): 1023-31, CrossRef.

Morsczeck C, Reck A, Reichert TE. WNT5A supports viability of senescent human dental follicle cells. Mol Cell Biochem. 2019; 455(1-2): 21-8, CrossRef.

Werle SB, Lindemann D, Steffens D, Demarco FF, de Araujo FB, Pranke P, et al. Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig. 2016; 20(1): 75-81, CrossRef.

Ma D, Gao J, Yue J, Yan W, Fang F, Wu B. Changes in proliferation and osteogenic differentiation of stem cells from deep caries in vitro. J Endod. 2012; 38(6): 796-802, CrossRef.

Chen Y, Li X, Wu J, Lu W, Xu W, Wu B. Dental pulp stem cells from human teeth with deep caries displayed an enhanced angiogenesis potential in vitro. J Dent Sci. 2021; 16(1): 318-26, CrossRef.

Seki D, Takeshita N, Oyanagi T, Sasaki S, Takano I, Hasegawa M, et al. Differentiation of odontoblast-like cells from mouse induced pluripotent stem cells by Pax9 and Bmp4 transfection. Stem Cells Transl Med. 2015; 4(9): 993-7, CrossRef.

Xie H, Dubey N, Shim W, Ramachandra CJA, Min KS, Cao T, et al. Functional odontoblastic-like cells derived from human iPSCs. J Dent Res. 2018; 97(1): 77-83, CrossRef.

Kobayashi Y, Nouet J, Baljinnyam E, Siddiqui Z, Fine DH, Fraidenraich D, et al. iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioact Mater. 2021; 14: 290-301, CrossRef.

Darmayanti S, Triana R, Chouw A, Dewi NM. Is stem cell a curer or an obstruction? Mol Cell Biomed Sci. 1(1): 17-27, CrossRef.

Zhang W, Yelick PC. Tooth repair and regeneration: Potential of dental stem cells. Trends Mol Med. 2021; 27(5): 501-11, CrossRef.

Ono M, Oshima M, Ogawa M, Sonoyama W, Hara ES, Oida Y, et al. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci Rep. 2017; 7: 44522, CrossRef.

Wang F, Wu Z, Fan Z, Wu T, Wang J, Zhang C, et al. The cell re-association-based whole-tooth regeneration strategies in large animal, Sus scrofa. Cell Prolif. 2018; 51(4): e12479, CrossRef.

Wu Z, Wang F, Fan Z, Wu T, He J, Wang J, et al. Whole-tooth regeneration by allogeneic cell reassociation in pig jawbone. Tissue Eng Part A. 2019; 25(17-18): 1202-12, CrossRef.

Zhang W, Vazquez B, Oreadi D, Yelick PC. Decellularized tooth bud scaffolds for tooth regeneration. J Dent Res. 2017; 96(5): 516-23, CrossRef.

Ferroni L, Gardin C, Sivolella S, Brunello G, Berengo M, Piattelli A, et al. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue. Int J Mol Sci. 2015; 16(3): 4666-81, CrossRef.

Rahmanisa S, Prajatelistia E, Wibowo I, Barlian A. 3D Biosilica scaffolds from Melophlus sarasinorum and Xestospongia testudinaria Indonesian sponges are biocompatible for cell growth and differentiation of human Wharton’s jelly mesenchymal stem cell in bone tissue engineering. Indones Biomed J. 2022; 14(4): 382-92, CrossRef.

AlHowaish NA, AlSudani DI, Khounganian R, AlMuraikhi N. Histological evaluation of restylane lyft used as a scaffold for dental pulp regeneration in non-infected immature teeth in dogs. Materials. 2022; 15(12): 4095, CrossRef.

Liu H, Lu J, Jiang Q, Haapasalo M, Qian J, Tay FR, et al. Biomaterial scaffolds for clinical procedures in endodontic regeneration. Bioact Mater. 2021; 12: 257-77, CrossRef.

Galler KM, D'Souza RN, Hartgerink JD, Schmalz G. Scaffolds for dental pulp tissue engineering. Adv Dent Res. 2011; 23(3): 333-9, CrossRef.

Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater. 2019; 4: 271-92, CrossRef.

Jadhav G, Shah N, Logani A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: A pilot clinical study. J Endod. 2012; 38(12): 1581-7, CrossRef.

Zhang DD, Chen X, Bao ZF, Chen M, Ding ZJ, Zhong M. Histologic comparison between platelet-rich plasma and blood clot in regenerative endodontic treatment: An animal study. J Endod. 2014; 40(9): 1388-93, CrossRef.

Nagy MM, Tawfik HE, Hashem AA, Abu-Seida AM. Regenerative potential of immature permanent teeth with necrotic pulps after different regenerative protocols. J Endod. 2014; 40(2): 192-8, CrossRef.

Narang I, Mittal N, Mishra N. A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: A clinical study. Contemp Clin Dent. 2015; 6(1): 63-8, CrossRef.

Bezgin T, Yilmaz AD, Celik BN, Kolsuz ME, Sonmez H. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J Endod. 2015; 41(1): 36-44, CrossRef.

Alagl A, Bedi S, Hassan K, AlHumaid J. Use of platelet-rich plasma for regeneration in non-vital immature permanent teeth: Clinical and cone-beam computed tomography evaluation. J Int Med Res. 2017; 45(2): 583-93, CrossRef.

Shivashankar VY, Johns DA, Maroli RK, Sekar M, Chandrasekaran R, Karthikeyan S, et al. Comparison of the effect of PRP, PRF and induced bleeding in the revascularization of teeth with necrotic pulp and open apex: A triple blind randomized clinical trial. J Clin Diagn Res. 2017; 11(6): ZC34-9, CrossRef.

Lv H, Chen Y, Cai Z, Lei L, Zhang M, Zhou R, et al. The efficacy of platelet-rich fibrin as a scaffold in regenerative endodontic treatment: A retrospective controlled cohort study. BMC Oral Health. 2018; 18(1): 139, CrossRef.

Ulusoy AT, Turedi I, Cimen M, Cehreli ZC. Evaluation of blood clot, platelet-rich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: A prospective randomized trial. J Endod. 2019; 45(5): 560-6, CrossRef.

Rizk HM, Al-Deen MSS, Emam AA. Regenerative endodontic treatment of bilateral necrotic immature permanent maxillary central incisors with platelet-rich plasma versus blood clot: A split mouth double-blinded randomized controlled trial. Int J Clin Pediatr Dent. 2019; 12(4): 332-9, CrossRef.

Rizk HM, Salah Al-Deen MSM, Emam AA. Comparative evaluation of platelet rich plasma (PRP) versus platelet rich fibrin (PRF) scaffolds in regenerative endodontic treatment of immature necrotic permanent maxillary central incisors: A double blinded randomized controlled trial. Saudi Dent J. 2020; 32(5): 224-31, CrossRef.

Jiang X, Liu H, Peng C. Clinical and radiographic assessment of the efficacy of a collagen membrane in regenerative endodontics: A randomized, controlled clinical trial. J Endod. 2017; 43(9): 1465-71, CrossRef.

Cymerman JJ, Nosrat A. Regenerative endodontic treatment as a biologically based approach for non-surgical retreatment of immature teeth. J Endod. 2020; 46(1): 44-50, CrossRef.

Kim SG, Solomon CS. Regenerative endodontic therapy in mature teeth using human-derived composite amnion-chorion membrane as a bioactive scaffold: A pilot animal investigation. J Endod. 2021; 47(7): 1101-9, CrossRef.

Jiang X, Liu H, Peng C. Continued root development of immature permanent teeth after regenerative endodontics with or without a collagen membrane: A randomized, controlled clinical trial. Int J Paediatr Dent. 2022; 32(2): 284-93, CrossRef.

Nosrat A, Kolahdouzan A, Khatibi AH, Verma P, Jamshidi D, Nevins AJ, et al. Clinical, radiographic, and histologic outcome of regenerative endodontic treatment in human teeth using a novel collagen-hydroxyapatite scaffold. J Endod. 2019; 45(2): 136-43, CrossRef.

Londero Cde L, Pagliarin CM, Felippe MC, Felippe WT, Danesi CC, Barletta FB. Histologic analysis of the influence of a gelatin-based scaffold in the repair of immature dog teeth subjected to regenerative endodontic treatment. J Endod. 2015; 41(10): 1619-25, CrossRef.

Jang JH, Moon JH, Kim SG, Kim SY. Pulp regeneration with hemostatic matrices as a scaffold in an immature tooth minipig model. Sci Rep. 2020; 10(1): 12536, CrossRef.

Palma PJ, Ramos JC, Martins JB, Diogenes A, Figueiredo MH, Ferreira P, et al. Histologic evaluation of regenerative endodontic procedures with the use of chitosan scaffolds in immature dog teeth with apical periodontitis. J Endod. 2017; 43(8): 1279-87, CrossRef.

Abbas KF, Tawfik H, Hashem AAR, Ahmed HMA, Abu-Seida AM, Refai HM. Histopathological evaluation of different regenerative protocols using Chitosan-based formulations for management of immature non-vital teeth with apical periodontitis: In vivo study. Aust Endod J. 2020; 46(3): 405-14, CrossRef.

Ruangsawasdi N, Zehnder M, Weber FE. Fibrin gel improves tissue ingrowth and cell differentiation in human immature premolars implanted in rats. J Endod. 2014; 40(2): 246-50, CrossRef.

Singh H, Rathee K, Kaur A, Miglani N. Pulp regeneration in an immature maxillary central incisor using hyaluronic acid hydrogel. Contemp Clin Dent. 2021; 12(1): 94-8, CrossRef.

Conde CM, Demarco FF, Casagrande L, Alcazar JC, Nör JE, Tarquinio SB. Influence of poly-L-lactic acid scaffold's pore size on the proliferation and differentiation of dental pulp stem cells. Braz Dent J. 2015; 26(2): 93-8, CrossRef.

Liang Z, Kawano S, Chen W, Sadrkhani MS, Lee C, Kim E, et al. Minced pulp as source of pulpal mesenchymal stem cells with odontogenic differentiation capacity. J Endod. 2018; 44(1): 80-6, CrossRef.

Zou H, Wang G, Song F, Shi X. Investigation of human dental pulp cells on a potential injectable poly(lactic-co-glycolic acid) microsphere scaffold. J Endod. 2017; 43(5): 745-50, CrossRef.

Gangolli RA, Devlin SM, Gerstenhaber JA, Lelkes PI, Yang M. A bilayered poly (lactic-co-glycolic acid) scaffold provides differential cues for the differentiation of dental pulp stem cells. Tissue Eng Part A. 2019; 25(3-4): 224-33, CrossRef.

Brown A, Zaky S, Ray H Jr, Sfeir C. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015; 11: 543-53, CrossRef.

Yang M, Gao X, Shen Z, Shi X, Lin Z. Gelatin-assisted conglutination of aligned polycaprolactone nanofilms into a multilayered fibre-guiding scaffold for periodontal ligament regeneration. RSC Adv. 2019; 9(1): 507-18, CrossRef.

Guo T, Li Y, Cao G, Zhang Z, Chang S, Czajka-Jakubowska A, et al. Fluorapatite-modified scaffold on dental pulp stem cell mineralization. J Dent Res. 2014; 93(12): 1290-5, CrossRef.

Dissanayaka WL, Zhang C. Scaffold-based and scaffold-free strategies in dental pulp regeneration. J Endod. 2020; 46(9S): S81-9, CrossRef.

Wu DT, Munguia-Lopez JG, Cho YW, Ma X, Song V, Zhu Z, et al. Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine. Molecules. 2021; 26(22): 7043, CrossRef.

Nagata JY, Gomes BP, Rocha Lima TF, Murakami LS, de Faria DE, Campos GR, et al. Traumatized immature teeth treated with 2 protocols of pulp revascularization. J Endod. 2014; 40(5): 606-12, CrossRef.

Lee JY, Kersten DD, Mines P, Beltran TA. Regenerative endodontic procedures among endodontists: A web-based survey. J Endod. 2018; 44(2): 250-5, CrossRef.

Gathani KM, Raghavendra SS. Scaffolds in regenerative endodontics: A review. Dent Res J. 2016; 13(5): 379-86, CrossRef.

Tangsupati P, Murdiastuti K. The effect of collagen activation on platelet rich plasma for proliferation of periodontal ligament fibroblasts. Indones Biomed J. 2018; 10(3): 278-83, CrossRef.

Ray HL Jr, Marcelino J, Braga R, Horwat R, Lisien M, Khaliq S. Long-term follow up of revascularization using platelet-rich fibrin. Dent Traumatol. 2016; 32(1): 80-4, CrossRef.

Deeb MA. Role of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) in oro-facial tissue regeneration: A narrative review. J Adv Oral Res. 2020; 11(1): 5-11, CrossRef.

Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, Ellini MR, Nekoofar MH, Dummer PM. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: A case series. J Endod. 2017; 43(3): 401-8, CrossRef.

Li X, Hou J, Wu B, Chen T, Luo A. Effects of platelet-rich plasma and cell coculture on angiogenesis in human dental pulp stem cells and endothelial progenitor cells. J Endod. 2014; 40(11): 1810-4, CrossRef.

Chai J, Jin R, Yuan G, Kanter V, Miron RJ, Zhang Y. Effect of liquid platelet-rich fibrin and platelet-rich plasma on the regenerative potential of dental pulp cells cultured under inflammatory conditions: A comparative analysis. J Endod. 2019; 45(8): 1000-8, CrossRef.

Jazayeri HE, Lee SM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater. 2020; 36(2): e47-58, CrossRef.

Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med. 2019; 13(1): 58-75, CrossRef.

Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, et al. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics. 2020; 5(3): 34, CrossRef.

Moreira MS, Sarra G, Carvalho GL, Gonçalves F, Caballero-Flores HV, Pedroni ACF, et al. Physical and biological properties of a chitosan hydrogel scaffold associated to photobiomodulation therapy for dental pulp regeneration: An in vitro and in vivo study. Biomed Res Int. 2021; 2021: 6684667, CrossRef.

Kwon YS, Lee SH, Hwang YC, Rosa V, Lee KW, Min KS. Behaviour of human dental pulp cells cultured in a collagen hydrogel scaffold cross-linked with cinnamaldehyde. Int Endod J. 2017; 50(1): 58-66, CrossRef.

Leite ML, Soares DG, Anovazzi G, Anselmi C, Hebling J, de Souza Costa CA. Fibronectin-loaded collagen/gelatin hydrogel is a potent signaling biomaterial for dental pulp regeneration. J Endod. 2021; 47(7): 1110-7, CrossRef.

Soares DG, Rosseto HL, Scheffel DS, Basso FG, Huck C, Hebling J, et al. Odontogenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold. Clin Oral Investig. 2017; 21(9): 2827-39, CrossRef.

Chrepa V, Austah O, Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (restylane) as injectable scaffold for dental pulp regeneration: An in vitro evaluation. J Endod. 2017; 43(2): 257-62, CrossRef.

Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod. 2008; 34(4): 421-6, CrossRef.

Jamal M, Greish Y, Chogle S, Goodis H, Karam SM. Growth and differentiation of dental stem cells of apical papilla on polycaprolactone scaffolds. Adv Exp Med Biol. 2018; 1077: 31-40, CrossRef.

Espitia-Quiroz LC, Fernández-Orjuela AL, Anaya-Sampayo LM, Acosta-Gómez AP, Sequeda-Castañeda LG, Gutiérrez-Prieto SJ, et al. Viability and adhesion of periodontal ligament fibroblasts on a hydroxyapatite scaffold combined with collagen, polylactic acid-polyglycolic acid copolymer and platelet-rich fibrin: A preclinical pilot study. Dent J. 2022; 10(9): 167, CrossRef.

Whitehouse LL, Thomson NH, Do T, Feichtinger GA. Bioactive molecules for regenerative pulp capping. Eur Cell Mater. 2021; 42: 415-37, CrossRef.

Schmalz G, Widbiller M, Galler KM. Signaling molecules and pulp regeneration. J Endod. 2017; 43(9S): S7-11, CrossRef.

Aksel H, Huang GT. Combined effects of vascular endothelial growth factor and bone morphogenetic protein 2 on odonto/osteogenic differentiation of human dental pulp stem cells in vitro. J Endod. 2017; 43(6): 930-5, CrossRef.

Huang KH, Chen YW, Wang CY, Lin YH, Wu YA, Shie MY, et al. Enhanced capability of bone morphogenetic protein 2-loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells. J Endod. 2018; 44(11): 1677-85, CrossRef.

Ni SL, Zhang J, Liu X, Li XW, Sun YJ, Zhang X, et al. Effects of human bone morphogenetic protein 2 (hBMP2) on tertiary dentin formation. Am J Transl Res. 2018; 10(9): 2868-76, PMID.

Subhi H, Reza F, Husein A, Al Shehadat SA, Nurul AA. Gypsum-based material for dental pulp capping: Effect of chitosan and BMP-2 on physical, mechanical, and cellular properties. Int J Biomater. 2018; 2018: 3804293, CrossRef.

Xiao M, Yao B, Zhang BD, Bai Y, Sui W, Wang W, et al. Stromal-derived factor-1α signaling is involved in bone morphogenetic protein-2-induced odontogenic differentiation of stem cells from apical papilla via the Smad and Erk signaling pathways. Exp Cell Res. 2019; 381(1): 39-49, CrossRef.

Wu J, Wang Q, Han Q, Zhu H, Li M, Fang Y, et al. Effects of Nel-like molecule-1 and bone morphogenetic protein 2 combination on rat pulp repair. J Mol Histol. 2019; 50(3): 253-61, CrossRef.

Pankajakshan D, Voytik-Harbin SL, Nör JE, Bottino MC. Injectable highly tunable oligomeric collagen matrices for dental tissue regeneration. ACS Appl Bio Mater. 2020; 3(2): 859-68, CrossRef.

Hattori-Sanuki T, Karakida T, Chiba-Ohkuma R, Miake Y, Yamamoto R, Yamakoshi Y, et al. Characterization of living dental pulp cells in direct contact with mineral trioxide aggregate. Cells. 2020; 9(10): 2336, CrossRef.

Zhong J, Tu X, Kong Y, Guo L, Li B, Zhong W, et al. LncRNA H19 promotes odontoblastic differentiation of human dental pulp stem cells by regulating miR-140-5p and BMP-2/FGF9. Stem Cell Res Ther. 2020; 11(1): 202, CrossRef.

Li X, Wang L, Su Q, Ye L, Zhou X, Song D, et al. Highly proliferative immortalized human dental pulp cells retain the odontogenic phenotype when combined with a beta-tricalcium phosphate scaffold and BMP2. Stem Cells Int. 2020; 2020: 4534128, CrossRef.

Min TJ, Kim MJ, Kang KJ, Jeoung YJ, Oh SH, Jang YJ. 3D spheroid formation using BMP-loaded microparticles enhances odontoblastic differentiation of human dental pulp stem cells. Stem Cells Int. 2021; 2021: 9326298, CrossRef.

Zhou C, Chen D, Ren J, Huang D, Li R, Luo H, et al. FGF8 and BMP2 mediated dynamic regulation of dental mesenchyme proliferation and differentiation via Lhx8/Suv39h1 complex. J Cell Mol Med. 2021; 25(6): 3051-62, CrossRef.

Tabatabaei FS, Torshabi M. Effects of non-collagenous proteins, TGF-β1, and PDGF-BB on viability and proliferation of dental pulp stem cells. J Oral Maxillofac Res. 2016; 7(1): e4, CrossRef.

Lin PS, Chang HH, Yeh CY, Chang MC, Chan CP, Kuo HY, et al. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling. J Formos Med Assoc. 2017; 116(5): 351-8, CrossRef.

Xu JG, Zhu SY, Heng BC, Dissanayaka WL, Zhang CF. TGF-β1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Res Ther. 2017; 8(1): 10, CrossRef.

Tziafas D, Kodonas K, Gogos C, Tziafa C, Papadimitriou S. Dentine-pulp tissue engineering in miniature swine teeth by set calcium silicate containing bioactive molecules. Arch Oral Biol. 2017; 73: 230-6, CrossRef.

Niwa T, Yamakoshi Y, Yamazaki H, Karakida T, Chiba R, Hu JC, et al. The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci Rep. 2018; 8(1): 4450, CrossRef.

Jiang L, Ayre WN, Melling GE, Song B, Wei X, Sloan AJ, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells. J Dent. 2020; 103: 103501, CrossRef.

Chang HH, Chen IL, Wang YL, Chang MC, Tsai YL, Lan WC, et al. Regulation of the regenerative activity of dental pulp stem cells from exfoliated deciduous teeth (SHED) of children by TGF-β1 is associated with ALK5/Smad2, TAK1, p38 and MEK/ERK signaling. Aging. 2020; 12(21): 21253-72, CrossRef.

Zhang Y, Liu J, Zou T, Qi Y, Yi B, Dissanayaka WL, et al. DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling. Stem Cell Res Ther. 2021; 12(1): 281, CrossRef.

Ha J, Bharti D, Kang YH, Lee SY, Oh SJ, Kim SB, et al. Human dental pulp-derived mesenchymal stem cell potential to differentiate into smooth muscle-like cells in vitro. Biomed Res Int. 2021; 2021: 8858412, CrossRef.

Bai Y, Liu X, Li J, Wang Z, Guo Q, Xiao M, et al. Stage-dependent regulation of dental pulp stem cell odontogenic differentiation by transforming growth factor-β1. Stem Cells Int. 2022; 2022: 2361376, CrossRef.

Takeuchi N, Hayashi Y, Murakami M, Alvarez FJ, Horibe H, Iohara K, et al. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factor. Oral Dis. 2015; 21(1): 113-22, CrossRef.

Fayazi S, Takimoto K, Diogenes A. Comparative evaluation of chemotactic factor effect on migration and differentiation of stem cells of the apical papilla. J Endod. 2017; 43(8): 1288-93, CrossRef.

Chang YC, Chang MC, Chen YJ, Liou JU, Chang HH, Huang WL, et al. Basic fibroblast growth factor regulates gene and protein expression related to proliferation, differentiation, and matrix production of human dental pulp cells. J Endod. 2017; 43(6): 936-42, CrossRef.

Chen L, Liu L, Wu C, Yang R, Chang J, Wei X. The extracts of bredigite bioceramics enhanced the pluripotency of human dental pulp cells. J Biomed Mater Res A. 2017; 105(12): 3465-74, CrossRef.

Zhang J, Lian M, Cao P, Bao G, Xu G, Sun Y, et al. Effects of nerve growth factor and basic fibroblast growth factor promote human dental pulp stem cells to neural differentiation. Neurochem Res. 2017; 42(4): 1015-25, CrossRef.

Bae WJ, Yi JK, Park J, Kang SK, Jang JH, Kim EC. Lysyl oxidase-mediated VEGF-induced differentiation and angiogenesis in human dental pulp cells. Int Endod J. 2018; 51(3): 335-46, CrossRef.

Abdel Moniem EM, El-Batran MM, Halawa AM, Gomaa DH, Eldeen GN, Aly RM. Optimizing a serum-free/xeno-free culture medium for culturing and promoting the proliferation of human dental pulp stem cells. Stem Cell Investig. 2019; 6: 15, CrossRef.

Imura K, Hashimoto Y, Okada M, Yoshikawa K, Yamamoto K. Application of hydroxyapatite nanoparticle-assembled powder using basic fibroblast growth factor as a pulp-capping agent. Dent Mater J. 2019; 38(5): 713-20, CrossRef.

Madanagopal TT, Franco-Obregón A, Rosa V. Comparative study of xeno-free induction protocols for neural differentiation of human dental pulp stem cells in vitro. Arch Oral Biol. 2020; 109: 104572, CrossRef.

Kawase-Koga Y, Fujii Y, Yamakawa D, Sato M, Chikazu D. Identification of neurospheres generated from human dental pulp stem cells in xeno-/serum-free conditions. Regen Ther. 2020; 14: 128-35, CrossRef.

Zhou J, Sun C. SENP1/HIF-1α axis works in angiogenesis of human dental pulp stem cells. J Biochem Mol Toxicol. 2020; 34(3): e22436, CrossRef.

Jauković A, Kukolj T, Trivanović D, Okić-Đorđević I, Obradović H, Miletić M, et al. Modulating stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL-17 and bFGF. J Cell Physiol. 2021; 236(11): 7322-41, CrossRef.

Luo L, Zhang Y, Chen H, Hu F, Wang X, Xing Z, et al. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells. Cell Prolif. 2021; 54(2): e12969, CrossRef.

Zheng K, Feng G, Zhang J, Xing J, Huang D, Lian M, et al. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int J Neurosci. 2021; 131(7): 625-33, CrossRef.

Divband B, Pouya B, Hassanpour M, Alipour M, Salehi R, Rahbarghazi R, et al. Towards induction of angiogenesis in dental pulp stem cells using chitosan-based hydrogels releasing basic fibroblast growth factor. Biomed Res Int. 2022; 2022: 5401461, CrossRef.

Lopez-Lozano AP, Arevalo-Niño K, Gutierrez-Puente Y, Montiel-Hernandez JL, Urrutia-Baca VH, Del Angel-Mosqueda C, et al. SSEA-4 positive dental pulp stem cells from deciduous teeth and their induction to neural precursor cells. Head Face Med. 2022; 18(1): 9, CrossRef.

Zhang Z, Warner KA, Mantesso A, Nör JE. PDGF-BB signaling via PDGFR-β regulates the maturation of blood vessels generated upon vasculogenic differentiation of dental pulp stem cells. Front Cell Dev Biol. 2022; 10: 977725, CrossRef.

Lee HT, Chang HT, Lee S, Lin CH, Fan JR, Lin SZ, et al. Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction. Sci Rep. 2016; 6: 32595, CrossRef.

Zhang M, Jiang F, Zhang X, Wang S, Jin Y, Zhang W, et al. The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration. Stem Cells Transl Med. 2017; 6(12): 2126-34, CrossRef.

Al-Hezaimi K, Naghshbandi J, Alhuzaimi R, Alonizan F, AlQwizany I, Rotstein I. Regeneration of secondary dentin using recombinant human platelet-derived growth factor and MTA for pulp capping: A randomized controlled human clinical trial. Int J Periodontics Restorative Dent. 2020; 40(4): 477-85, CrossRef.

Al-Hezaimi K, Naghshbandi J, Alhuzaimi R, Alonaizan F, AlQwizany I, Rotstein I. Evaluation of recombinant human platelet-derived growth factor or enamel matrix derivative plus calcium hydroxide for pulp capping: A randomized controlled human clinical trial. Int J Periodontics Restorative Dent. 2020; 40(5): 645-54, CrossRef.

Funada K, Yoshizaki K, MIyazaki K, Han X, Yuta T, Tian T, et al. microRNA-875-5p plays critical role for mesenchymal condensation in epithelial-mesenchymal interaction during tooth development. Sci Rep. 2020; 10(1): 4918, CrossRef.

Atlas Y, Gorin C, Novais A, Marchand MF, Chatzopoulou E, Lesieur J, et al. Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials. 2021; 268: 120594, CrossRef.

Xu JG, Gong T, Wang YY, Zou T, Heng BC, Yang YQ, et al. Inhibition of TGF-β signaling in SHED enhances endothelial differentiation. J Dent Res. 2018; 97(2): 218-25, CrossRef.

Nabeshima CK, Valdivia JE, Caballero-Flores H, Arana-Chavez VE, Machado MEL. Immunohistological study of the effect of vascular endothelial growth factor on the angiogenesis of mature root canals in rat molars. J Appl Oral Sci. 2018; 26: e20170437, CrossRef.

Matsuura T, Sugimoto K, Kawata-Matsuura VKS, Yanagiguchi K, Yamada S, Hayashi Y. Cell migration capability of vascular endothelial growth factor into the root apex of a root canal model in vivo. J Oral Sci. 2018; 60(4): 634-7, CrossRef.

Wongkhum C, Chotigeat W, Kedjarune-Leggat U. Effect of recombinant vascular endothelial growth factor and translationally controlled tumor protein on 2‑hydroxyethyl methacrylate‑treated pulp cells. Mol Med Rep. 2018; 17(4): 6100-8, CrossRef.

Zhu L, Dissanayaka WL, Zhang C. Dental pulp stem cells overexpressing stromal-derived factor-1α and vascular endothelial growth factor in dental pulp regeneration. Clin Oral Investig. 2019; 23(5): 2497-509, CrossRef.

Wu S, Zhou Y, Yu Y, Zhou X, Du W, Wan M, et al. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int. 2019; 2019: 1515040, CrossRef.

Sun X, Meng L, Qiao W, Yang R, Gao Q, Peng Y, et al. Vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 axis promotes human dental pulp stem cell migration via the FAK/PI3K/Akt and p38 MAPK signalling pathways. Int Endod J. 2019; 52(12): 1691-703, CrossRef.

Lu W, Xu W, Li J, Chen Y, Pan Y, Wu B. Effects of vascular endothelial growth factor and insulin growth factor‑1 on proliferation, migration, osteogenesis and vascularization of human carious dental pulp stem cells. Mol Med Rep. 2019; 20(4): 3924-32, CrossRef.

Luzuriaga J, Irurzun J, Irastorza I, Unda F, Ibarretxe G, Pineda JR. Vasculogenesis from human dental pulp stem cells grown in matrigel with fully defined serum-free culture media. Biomedicines. 2020; 8(11): 483, CrossRef.

Sasaki JI, Zhang Z, Oh M, Pobocik AM, Imazato S, Shi S, et al. VE-cadherin and anastomosis of blood vessels formed by dental stem cells. J Dent Res. 2020; 99(4): 437-45, CrossRef.

Zhang R, Xie L, Wu H, Yang T, Zhang Q, Tian Y, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020; 113: 305-16, CrossRef.

Li Q, Hu Z, Liang Y, Xu C, Hong Y, Liu X. Multifunctional peptide-conjugated nanocarriers for pulp regeneration in a full-length human tooth root. Acta Biomater. 2021; 127: 252-65, CrossRef.

Janebodin K, Chavanachat R, Hays A, Reyes Gil M. Silencing VEGFR-2 hampers odontoblastic differentiation of dental pulp stem cells. Front Cell Dev Biol. 2021; 9: 665886, CrossRef.

Shen Z, Tsao H, LaRue S, Liu R, Kirkpatrick TC, Souza LC, et al. Vascular endothelial growth factor and/or nerve growth factor treatment induces expression of dentinogenic, neuronal, and healing markers in stem cells of the apical papilla. J Endod. 2021; 47(6): 924-31, CrossRef.

Furfaro F, Ang ES, Lareu RR, Murray K, Goonewardene M. A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model - A pilot study. Prog Orthod. 2014; 15(1): 2, CrossRef.

Quintiliano K, Crestani T, Silveira D, Helfer VE, Rosa A, Balbueno E, et al. Neural differentiation of mesenchymal stem cells on scaffolds for nerve tissue engineering applications. Cell Reprogram. 2016; 18(6): 369-81, CrossRef.

Mitsiadis TA, Magloire H, Pagella P. Nerve growth factor signalling in pathology and regeneration of human teeth. Sci Rep. 2017; 7(1): 1327, CrossRef.

Luzuriaga J, Pineda JR, Irastorza I, Uribe-Etxebarria V, García-Gallastegui P, Encinas JM, et al. BDNF and NT3 reprogram human ectomesenchymal dental pulp stem cells to neurogenic and gliogenic neural crest progenitors cultured in serum-free medium. Cell Physiol Biochem. 2019; 52(6): 1361-80, CrossRef.

Xiao N, Thor D, Yu WY. Neurotrophins BDNF and NT4/5 accelerate dental pulp stem cell migration. Biomed J. 2021; 44(3): 363-8, CrossRef.

Kim YS, Min KS, Jeong DH, Jang JH, Kim HW, Kim EC. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells. J Endod. 2010; 36(11): 1824-30, CrossRef.

Sagomonyants K, Mina M. Biphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways. Connect Tissue Res. 2014; 55 (Suppl 1): 53-6, CrossRef.

Ajlan SA, Ashri NY, Aldahmash AM, Alnbaheen MS. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health. 2015; 15: 132, CrossRef.

Harsan, Mariya S, Sajuti D, Islam AA, Wahjoepramono EJ, Yusuf I. Isolation of mesenchymal stem cells from adipose tissue. Indones Biomed J. 2015; 7(3): 153-6, CrossRef.

Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006; 361(1473): 1545-64, CrossRef.

Osathanon T, Nowwarote N, Pavasant P. Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCγ signaling pathway. J Cell Biochem. 2011; 112(7): 1807-16, CrossRef.

El Ashiry EA, Alamoudi NM, El Ashiry MK, Bastawy HA, El Derwi DA, Atta HM. Tissue engineering of necrotic dental pulp of immature teeth with apical periodontitis in dogs: Radiographic and histological evaluation. J Clin Pediatr Dent. 2018; 42(5): 373-82, CrossRef.

Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006; 101(3): e45-50, CrossRef.

Garcia-Godoy F, Murray PE. Recommendations for using regenerative endodontic procedures in permanent immature traumatized teeth. Dent Traumatol. 2012; 28(1): 33-41, CrossRef.

Vishwanat L, Duong R, Takimoto K, Phillips L, Espitia CO, Diogenes A, et al. Effect of bacterial biofilm on the osteogenic differentiation of stem cells of apical papilla. J Endod. 2017; 43(6): 916-22, CrossRef.

Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B. Regenerative endodontics: A comprehensive review. Int Endod J. 2018; 51(12): 1367-88, CrossRef.

Marlina, Rahmadian R, Armenia, Widowati W, Rizal, Kusuma HSW, et al. Isolation, characterization, proliferation and differentiation of synovial membrane-derived mesenchymal stem cells (SM-MSCs) from osteoarthritis patients. Mol Cell Biomed Sci. 2020; 4(2): 76-82, CrossRef.


Copyright (c) 2023 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Indexed by:






The Prodia Education and Research Institute