Presence of blaCTXM-1, blaCTXM-9, and blaTEM-1 Genes in Extended-spectrum β-lactamase-producing Escherichia coli Isolates from Hospital Wastewater

Charlene Princess Salvador Tolenada, Geraldine Budomo Dayrit


BACKGROUND: Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) are selectively proliferated in the human gut, excreted through feces, and deposited through wastewater lines, with hospital wastewater acting as a major reservoir of antibiotic resistance genes and resistant bacteria, thus pose adverse effects to human health. This study aimed to determine the presence of blaCTXM-1, blaCTXM-9, blaTEM-1, and blaSHV-1 genes in ESBL-EC in wastewater from selected hospitals in Manila and Quezon City, the Philippines.

METHODS: Influent and effluent in twelve hospital wastewater treatment plants were collected, screened for cefotaxime-resistant E. coli, and examined for the ESBL production through phenotypic characterization using conventional bacterial identification, disk diffusion method, and VITEK® 2 Compact system and genotypic identification of ESBL-EC blaCTXM-1, blaCTXM-9, blaTEM-1, blaSHV-1 genes using multiplex polymerase chain reaction (PCR).

RESULTS: Conventional bacterial identification methods and the VITEK® 2 Compact system results showed that both influent and effluent samples were positive for ESBL-EC at 33.3% and 16.7%, respectively. Multiplex PCR results revealed that various E. coli isolates were of ESBL-EC blaCTXM-1, blaCTXM-9, and blaTEM-1 genes. Multi-drug resistance was observed among all ESBL-EC isolates with resistance being highest against ampicillin, cefuroxime, ceftazidime, ceftriaxone, cefepime, piperacillin, and aztreonam.

CONCLUSION: As the study revealed the presence of ESBL-producing bacteria, efforts must be made to ensure the prudent antimicrobial use with possible emphasis on antibiotic rotation accompanied by intensified infection prevention and control in hospital settings.

KEYWORDS: antimicrobial resistance, beta-lactams, blaCTXM, blaTEM, extended-spectrum beta-lactamase, E. coli, hospital wastewater

Full Text:



O’Neill J. Tackling Drug-resistant Infections Globally: Final Report and Recommendations. London: Wellcome Trust and HM Government; 2016, article.

Noerwidayati E, Dahesihdewi A, Sianipar O. Screening of extended-spectrum β-lactamases (ESBL)-producing Klebsiella pneumoniae with ChromID ESBL media. Indones Biomed J. 2018; 10(3): 217-21, CrossRef.

Anggini PW, Amanina SA, Asyura SR, Dion R. In silico study of essential oil of Bambusa vulgaris leaves as an anti beta-lactamase compound. Mol Cell Biomed Sci. 2022; 6(3): 147-54, CrossRef.

Zarfel G, Galler H, Feierl G, Haas D, Kittinger C, Leitner E, et al. Comparison of extended-spectrum-β-lactamase (ESBL) carrying Escherichia coli from sewage sludge and human urinary tract infection. Environ Pollut. 2013; 173: 192-9, CrossRef.

Rawat D, Nair D. Extended-spectrum β-lactamases in Gram negative bacteria. J Glob Infect Dis. 2010; 2(3): 263-74, CrossRef.

Gundran RS, Cardenio PA, Villanueva MA, Sison FB, Benigno CC, Kreausukon K, et al. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Vet Res. 2019; 15(1): 227, CrossRef.

Banu RA, Alvarez JM, Reid AJ, Enbiale W, Labi AK, Ansa EDO, et al. Extended spectrum beta-lactamase Escherichia coli in river waters collected from two cities in Ghana, 2018-2020. Trop Med Infect Dis. 2021; 6(2): 105, CrossRef.

Tolentino ARC, Opeda ARP, Naniong LL, Paralejas LJI, Porciuncula FMM, Getuiza IMA, et al. Prevalence of blaCTX-M, blaTEM, and blaSHV genes of extended-spectrum beta lactamase-producing Escherichia coli in aquaculture in Asia: A systematic review. Asian J Biol Life Sci. 2022; 11(2): 225-31, CrossRef.

Picão RC, Cardoso JP, Campana EH, Nicoletti AG, Petrolini FV, Assis DM, et al. The route of antimicrobial resistance from the hospital effluent to the environment: Focus on the occurrence of KPC-producing Aeromonas spp. and Enterobacteriaceae in sewage. Diagn Microbiol Infect Dis. 2013; 76(1): 80-5, CrossRef.

Finley R, Glass-Kaastra SK, Hutchinson J, Patrick DM, Weiss K, Conly J. Declines in outpatient antimicrobial use in Canada (1995–2010). PLoS ONE. 2013; 8(10): e76398, CrossRef.

Gündoğdu A, Jennison AV, Smith HV, Stratton H, Katouli M. Extended-spectrum β-lactamase producing Escherichia coli in hospital wastewaters and sewage treatment plants in Queensland, Australia. Can J Microbiol. 2013; 59(11): 737–45, CrossRef.

Botelho LA, Kraychete GB, Costa e Silva JL, Regis DV, Picão RC, Moreira BM, et al. Widespread distribution of CTX-M and plasmid-mediated AmpC β-lactamases in Escherichia coli from Brazilian chicken meat. Mem Inst Oswaldo Cruz. 2015; 110(2): 249-54, CrossRef.

Dires S, Birhanu T, Ambelu A, Sahilu G. Antibiotic resistant bacteria removal of subsurface flow constructed wetlands from hospital wastewater. J Environ Chem Eng. 2018; 6(4): 4265-72, CrossRef.

Bergey DH, Holt JG. Bergey’s Manual of Determinative Bacteriology. 9th ed. Baltimore: Williams & Wilkins; 1994, NLMID.

Collee JG, Mackie TJ, McCartney JE. Mackie and McCartney Practical Medical Microbiology. 14th ed. New York: Churchill Livingstone; 1996, NLMID.

Murray PR, Patrick R. Manual of Clinical Microbiology. 7th ed. Washington, D. C.: American Society for Microbiology; 1999, NLMID.

Clinical and Laboratory Standards Institute. M100 – Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Wayne: Clinical and Laboratory Standards Institute; 2020, article.

Ibrahim DR, Dodd CE, Stekel DJ, Ramsden SJ, Hobman JL. Multidrug resistant, extended spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from a dairy farm. FEMS Microbiol Ecol. 2016; 92(4): fiw013, CrossRef.

Montero L, Irazabal J, Cardenas P, Graham JP, Trueba G. Extended-spectrum beta-lactamase producing-Escherichia coli isolated from irrigation waters and produce in Ecuador. Front Microbiol. 2021; 12: 709418. doi: 10.3389/fmicb.2021.709418, CrossRef.

Conte D, Palmeiro JK, da Silva Nogueira K, de Lima TM, Cardoso MA, Pontarolo R, et al. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol Environ Saf. 2017; 136: 62-9, CrossRef.

Spanu T, Sanguinetti M, Tumbarello M, D'Inzeo T, Fiori B, Posteraro B, et al. Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates. J Clin Microbiol. 2006; 44(9): 3257-62, CrossRef.

Joyanes P, del Carmen Conejo M, Martínez-Martínez L, Perea EJ. Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples. J Clin Microbiol. 2001; 39(9): 3247-53, CrossRef.

World Health Organization [Internet]. Geneva: World Health Organization; ©2021. AWaRe Classification [update 2021 Sep 30; cited 2023 Jul 17]. 2021. Available from:

The European Committee on Antimicrobial Susceptibility Testing [Internet]. Växjö: The European Committee on Antimicrobial Susceptibility Testing; ©2021. Breakpoint Tables for Interpretation of MICs and Zone Diameters [cited 2023 Jul 17]. Available from:

Karagöz A, Acar S, Körkoca H. Characterization of Klebsiella isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and determination of antimicrobial resistance with VITEK 2 advanced expert system (AES). Turk J Med Sci. 2015; 45(6): 1335-44, CrossRef.

Bajpai T, Pandey M, Varma M, Bhatambare GS. Prevalence of TEM, SHV, and CTX-M beta-lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med. 2017; 7(1): 12-16, CrossRef.

Desjardins PR, Conklin DS. Microvolume quantitation of nucleic acids. Curr Protoc Mol Biol. 2011; Appendix 3: 3J, CrossRef.

Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010; 65(3): 490-5, CrossRef.

Silago V, Kovacs D, Samson H, Seni J, Matthews L, Oravcová K, et al. Existence of multiple ESBL genes among phenotypically confirmed ESBL producing Klebsiella pneumoniae and Escherichia coli concurrently isolated from clinical, colonization and contamination samples from neonatal units at Bugando Medical Center, Mwanza, Tanzania. Antibiotics. 2021; 10(5): 476, CrossRef.

Lota MMM, Latorre AAE. A retrospective study on extended spectrum beta-lactamase bacteria in the Philippines from 1999 – 2013. Acta Med Philipp. 2014; 48(1): 28-35, CrossRef.

Bradford PA, Cherubin CE, Idemyor V, Rasmussen BA, Bush K. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: Identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate. Antimicrob Agents Chemother. 1994; 38(4): 761-6, CrossRef.

Samaha-Kfoury JN, Araj GF. Recent developments in beta lactamases and extended spectrum beta lactamases. BMJ. 2003; 327(7425): 1209-13, CrossRef.

Lucena MAH, Metillo EB, Oclarit JM. Prevalence of CTX-M extended spectrum β-lactamase-producing Enterobacteriaceae at a private tertiary hospital in southern Philippines. Philipp J Sci. 2012; 14(1): 117–21, article.

Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015; 22(1): 90-101, CrossRef.

World Health Organization. Global Action Plan on Antimicrobial Resistance. Geneva: World Health Organization; 2015, article.

Mehta Y, Gupta A, Todi S, Myatra S, Samaddar DP, Patil V, et al. Guidelines for prevention of hospital acquired infections. Indian J Crit Care Med. 2014; 18(3): 149-63, CrossRef.

Vivant AL, Boutin C, Prost-Boucle S, Papias S, Hartmann A, Depret G, et al. Free water surface constructed wetlands limit the dissemination of extended-spectrum beta-lactamase producing Escherichia coli in the natural environment. Water Res. 2016; 104: 178-88, CrossRef.

World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2017-2018. Geneva: World Health Organization; 2018, article.

Liakopoulos A, Mevius D, Ceccarelli D. A review of SHV extended-spectrum β-lactamases: Neglected yet ubiquitous. Front Microbiol. 2016; 7: 1374, CrossRef.

Fouz N, Pangesti KNA, Yasir M, Al-Malki AL, Azhar EI, Hill-Cawthorne GA, et al. The contribution of wastewater to the transmission of antimicrobial resistance in the environment: Implications of mass gathering settings. Trop Med Infect Dis. 2020; 5(1): 33, CrossRef.


Copyright (c) 2023 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Indexed by:






The Prodia Education and Research Institute