Effects of SGLT2-inhibitor on The Expression of MicroRNA-21, Transforming Growth Factor-β1, and Matrix Metalloproteinase-2 in The Process of Cardiac Fibrosis in Hyperglycemic Model Rats

Muhammad Ridwan, Herlina Dimiati, Maimun Syukri, Ronny Lesmana, Lia Meuthia Zaini

Abstract


BACKGROUND: Sodium glucose co-transporter-2 inhibitor (SGLT2-i), a new oral antidiabetic drug, has been recommended for its morbidity and mortality benefits in patients with heart failure. This study aimed to determine the effect of acute SGLT2-i therapy on the relative ratio expression of microRNA-21 (miR-21), transforming growth factor-β1 (TGF-β1), and matrix metalloproteinase-2 (MMP-2) in the process of cardiac fibrosis in the hyperglycemia Wistar rat models compared to biguanide (metformin) therapy.

METHODS: We used Streptozotocin (STZ) to induce hyperglycemia in Wistar rats (n=31), randomly divided into four groups: negative control (NC, n=4), positive control (PC, n=10), hyperglycemia plus metformin (M, n=8), and hyperglycemia plus empagliflozin (E, n=9). After seven weeks, the rats were sacrificed and the heart tissue was taken for microRNA and messenger RNA (mRNA) extraction, followed by reverse transcription quantitative real time polymerase chain reaction (RT-qPCR) examination. The data was analyzed using One-way ANOVA.

RESULTS: Results showed a decreasing trend in the gene expression relative ratio of miR-21 (1.0 vs. 1.9; p=0.079) and TGF-β1 (0.9 vs. 3.2; p=0.145), but a significant increase in MMP-2 gene expression (1.3 vs. 0.7; p=0.002) in the SGLT2-i (empagliflozin) vs. biguanide (metformin) groups.

CONCLUSION: Empagliflozin administration may play a significant role in preventing the occurrence of cardiac fibrosis in hyperglycemia.

KEYWORDS: sodium glucose co-transporter-2 inhibitor, microRNA-21, transforming growth factor-β1, matrix metalloproteinase-2, cardiac fibrosis


Full Text:

PDF

References


Boyko EJ, Magliano DJ, Karuranga S, Piemonte L, Riley P, Saeedi P, et al. IDF Diabetes Atlas 2021. 10th edition. Brussels: International Diabetes Federation; 2021, article.

Fujita Y, Inagaki N. Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2 diabetes: Clinical data and mechanism of action. J Diabetes Investig. 2014; 5(3): 265–75, CrossRef.

Pancholia AK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Indian Heart J. 2018; 70(6): 915–21, CrossRef.

Scheen AJ. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus. Clin Pharmacokinet. 2014; 53(4): 295–304, CrossRef.

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117–28, CrossRef.

Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: Results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016; 37(19): 1526–34, CrossRef.

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599– 726, CrossRef.

Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/ American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022; 145(18): e895–1032, CrossRef.

Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic Transl Sci. 2020; 5(6): 632–44, CrossRef.

Filippatos TD, Liontos A, Papakitsou I, Elisaf MS. SGLT2 inhibitors and cardioprotection: A matter of debate and multiple hypotheses. Postgrad Med. 2019; 131(2): 82–8, CrossRef.

Westermann D, Rutschow S, Jäger S, Linderer A, Anker S, Riad A, et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: The role of angiotensin type 1 receptor antagonism. Diabetes. 2007; 56(3): 641–6, CrossRef.

Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E, et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem. 2003; 278(14): 11888–96, CrossRef.

Lee HW, Lee SJ, Lee MY, Park MW, Kim SS, Shin N, et al. Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus. PLoS One. 2019; 14(8): e0221798, CrossRef.

Kobusiak-Prokopowicz M, Krzysztofik J, Kaaz K, Jolda-Mydlowska B, Mysiak A. MMP-2 and TIMP-2 in patients with heart failure and chronic kidney disease. Open Medicine. 2018; 13(1): 237–46, CrossRef.

Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014; 142(3): 375–415, CrossRef.

Ridwan M, Dimiati H, Syukri M, Lesmana R. Potential molecular mechanism underlying cardiac fibrosis in diabetes mellitus: A narrative review. Egypt Heart J. 2023; 75(1): 46, CrossRef.

Dietrich C, Singh M, Kumar N, Singh SR. The emerging roles of microRNAs in stem cell aging. Adv Exp Med Biol. 2018; 1056: 11–26, CrossRef.

Xiao J, Tang X, Li Y, Fang Z, Ma D, He Y, et al. Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure. BMC Bioinformatics. 2011; 12: 165, CrossRef.

Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAs in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018; 39(7): 1073–84, CrossRef.

Meiliana A, Wijaya A. MicroRNAs in obesity, metabolic syndrome and diabetes mellitus. Indones Biomed J. 2011; 3(1): 4–17, CrossRef.

Savitri M, Bintoro UY, Sedana MP, Diansyah MN, Romadhon PZ, Amrita PNA, et al. Circulating plasma miRNA-21 as a superior biomarker compared to CA 15-3: Assessment in healthy age matched subjects and different stage of breast cancer patients. Indones Biomed J. 2020; 12(2): 157–64, CrossRef.

Dong DL, Yang BF. Role of microRNAs in cardiac hypertrophy, myocardial fibrosis and heart failure. Acta Pharm Sin B. 2011; 1(1): 1–7, CrossRef.

Wang J, Liew OW, Richards AM, Chen YT. Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci. 2016; 17(5): 749, CrossRef.

Leary S, Underwood W, Anthony R, Cartner S, Grandin T, Greenacre C, et al. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Schaumburg: American Veterinary Medical Association; 2020, article.

Agilent Technologies. Absolutely RNA miRNA Kit: Instruction Manual. Santa Clara: Agilent Technologies; 2020, article.

Agilent Technologies. AriaMx Real-Time PCR System Setup and User Guide. Santa Clara: Agilent Technologies; 2023, article.

Masotti A, Preckel T. Analysis of small RNAs with the Agilent 2100 Bioanalyzer. Nat Methods. 2006; 3(8): 658, CrossRef.

Adams G. A beginner’s guide to RT- PCR, qPCR and RT-qPCR. Biochem. 2020; 42(3): 48–53, CrossRef.

Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013; 3(3): 71–85, PMID.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001; 25(4): 402–8, CrossRef.

Mone P, Lombardi A, Kansakar U, Varzideh F, Jankauskas SS, Pansini A, et al. Empagliflozin improves the microRNA signature of endothelial dysfunction in patients with heart failure with preserved ejection fraction and diabetes. J Pharmacol Exp Ther. 2023; 384(1): 116–22, CrossRef.

Joladarashi D, Thandavarayan RA, Babu SS, Krishnamurthy P. Small engine, big power: MicroRNAs as regulators of cardiac diseases and regeneration. Int J Mol Sci. 2014; 15(9): 15891–911, CrossRef.

Daud E, Ertracht O, Bandel N, Moady G, Shehadeh M, Reuveni T, et al. The impact of empagliflozin on cardiac physiology and fibrosis early after myocardial infarction in non-diabetic rats. Cardiovasc Diabetol. 2021; 20(1): 132, CrossRef.

Li C, Zhang J, Xue M, Li X, Han F, Liu X, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019; 18(1): 15, CrossRef.

Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, et al. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem. 2017; 42(6): 2207–19, CrossRef.

Kang S, Verma S, Hassanabad AF, Teng G, Belke DD, Dundas JA, et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: Novel translational clues to explain EMPA-REG OUTCOME results. Can J Cardiol. 2020; 36(4): 543–53, CrossRef.

Mason T, Coelho-Filho OR, Verma S, Chowdhury B, Zuo F, Quan A, et al. Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging. 2021; 14(6): 1164–73, CrossRef.

Meng L, Uzui H, Guo H, Tada H. Role of SGLT1 in high glucose level-induced MMP-2 expression in human cardiac fibroblasts. Mol Med Rep. 2018; 17(5): 6887–92, CrossRef.

Bromage DI, Godec TR, Pujades-Rodriguez M, Gonzalez-Izquierdo A, Denaxas S, Hemingway H, et al. Metformin use and cardiovascular outcomes after acute myocardial infarction in patients with type 2 diabetes: A cohort study. Cardiovasc Diabetol. 2019; 18(1): 168, CrossRef.

Hartman MHT, Prins JKB, Schurer RAJ, Lipsic E, Lexis CPH, van der Horst-Schrivers ANA, et al. Two-year follow-up of 4 months metformin treatment vs. placebo in ST-elevation myocardial infarction: Data from the GIPS-III RCT. Clin Res Cardiol. 2017; 106(12): 939–46, CrossRef.




DOI: https://doi.org/10.18585/inabj.v16i1.2776

Copyright (c) 2024 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                   

 

 

The Prodia Education and Research Institute