A Closer Look at Cardioprotective Function of HDL: Revise the HDL – Cholesterol Hypothesis?

Anna Meiliana, Andi Wijaya


BACKGROUND: The strong inverse association of plasma levels of high-density lipoprotein (HDL) cholesterol with coronary heart disease (CHD) found in human epidemiological studies led to the development of the ‘HDL cholesterol hypothesis’, which posits that intervention to raise HDL cholesterol will result in reduced risk of CHD. A number of recent developments have brought the potential protective role of HDL into question. Several clinical trials of agents that substantially raise HDL-C have been demonstrated to not reduce CHD event rates.

CONTENT: For decades, HDL and HDL-cholesterol (HDL-C) levels were viewed as synonymous, and modulation of HDL-C levels by drug therapy held great promise for the prevention and treatment of cardiovascular disease. Nevertheless, recent failures of drugs that raise HDL-C to reduce cardiovascular risk and the now greater understanding of the complexity of HDL composition and biology have prompted researchers in the field to redefine HDL. As such, the focus of HDL has now started to shift away from a cholesterol-centric view toward HDL particle number, subclasses, and other alternative metrics of HDL. Many of the recently discovered functions of HDL are, in fact, not strictly conferred by its ability to promote cholesterol flux but by the other molecules it transports, including a diverse set of proteins, small RNAs, hormones, carotenoids, vitamins, and bioactive lipids. Based on HDL’s ability to interact with almost all cells and deliver fat-soluble cargo, HDL has the remarkable capacity to affect a wide variety of endocrine-like systems.

SUMMARY: There is a significant need to redefine HDL and its benefit. HDL transports a diverse set of functional proteins, including many binding proteins. HDL transports and deliver vitamins, carotenoids, and other small molecules. Moreover, HDL transports hormones, steroids and bile acids, and can modulate multiple endocrine pathways. HDLs also transport and deliver microRNAs to recipient cells and control gene expression. Likewise, HDLs carry bioactive lipids and can activate signaling cascades and receptors that control endothelial apoptosis, migration, survival and activation. Many of HDL’s alternative noncholesterol cargo likely confer many of HDL’s alternative functions.

KEYWORDS: HDL, ApoA1, RCT, ABCA1, ABCG1, miRNA, HDL lipidome, HDL proteome

Full Text:



Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the atherosclerosis risk in communities (aric) study. Circulation. 2001; 104: 1108-13, CrossRef.

Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977; 62: 707-14, CrossRef.

Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989; 79: 8-15, CrossRef.

Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009; 302: 1993-2000, CrossRef.

Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, et al. Treating to new targets investigators: HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007; 357: 1301-10, CrossRef.

Vickers KC, Remaley AT. HDL and cholesterol: life after the divorce? J Lipid Res. 2014; 55: 4-12, CrossRef.

Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007; 357: 2109-22, CrossRef.

AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011; 365: 2255-67, CrossRef.

Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012; 367: 2089-99, CrossRef.

Rye KA, Barter PJ. Cardioprotective functions of HDLs. J Lipid Res. 2014; 55: 168-79, CrossRef.

Luscher TF, Landmesser U, von Eckardstein A, Fogelman AM. High-density lipoprotein. Vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res. 2014; 114: 171-82, CrossRef.

ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010; 362: 1563-74, CrossRef.

Cheung MC, Zhao XQ, Chait A, Albers JJ, Brown BG. Antioxidant supplements block the response of HDL to simvastatin-niacin therapy in patients with coronary artery disease and low HDL. Arterioscler Thromb Vasc Biol. 2001; 8: 1320-6, CrossRef.

Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012; 380: 572-80, CrossRef.

Varbo A, Benn M, Tybjærg-Hansen A, Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013; 61: 427-36, CrossRef.

Duffy D, Rader DJ. Emerging therapies targeting high-density lipoprotein metabolism and reverse cholesterol transport. Circulation. 2006; 113: 1140-50, CrossRef.

Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004; 95: 764-72, CrossRef.

Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. Highdensity lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995; 15: 1987-94, CrossRef.

Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ. Res. 2006; 98: 1352-64, CrossRef.

Bisoendial RJ, Hovingh GK, Levels JH, Lerch PG, Andresen I, Hayden MR, et al. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation. 2003; 107: 2944-8, CrossRef.

Seetharam D, Mineo C, Gormley AK, Gibson LL, Vongpatanasin W, Chambliss KL, et al. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I. Circ Res. 2006; 98: 63-72, CrossRef.

Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ. High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol. 2006; 26: 1144-9, CrossRef.

Sumi M, Sata M, Miura S, Rye KA, Toya N, Kanaoka Y, et al. Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2007; 27: 813-8, CrossRef.

Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010; 328: 1689-93, CrossRef.

Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009; 119: 2103-11, CrossRef.

Drew BG, Rye KA, Duffy SJ, Barter P, Kingwell BA. The emerging role of HDL in glucose metabolism. Nat Rev Endocrinol. 2012; 8: 237-45, CrossRef.

Nicholls SJ, Puri R. Is it time for HDL to change its tune? Circulation. 2013; 128: 1175-6, CrossRef.

Feig JE, Hewing B, Smith JD, Hazen S, Fisher EA. High-density lipoprotein and atheroschlerosis regression. Circ Res. 2014; 114: 205-13, CrossRef.

Rader DJ, Tall AR. Is it time to revise the HDL cholesterol hypothesis? Nat Med. 2012; 19: 1344-6, CrossRef.

Oldoni F, Sinke RJ, Kuinvenhoven JA. Mendelian disorders of highdensity lipoprotein metabolism. Circ Res. 2014; 114: 124-42, CrossRef.

Mulya A, Seo J, Brown AL, Gebre AK, Boudyguina E, Shelness GS, et al. Apolipoprotein M expression increases the size of nascent pre beta HDL formed by ATP binding cassette transporter A1. J Lipid Res. 2010; 51: 514-24, CrossRef.

Rye KA, Clay MA, Barter PJ. Remodelling of high density lipoproteins by plasma factors. Atherosclerosis. 1999; 145: 227-38, CrossRef.

Florentin M, Liberopoulos EN, Wierzbicki AS, Mikhailidis DP. Multiple actions of high-density lipoprotein. Curr Opin Cardiol. 2008; 23: 370-8, CrossRef.

Lusa S, Jauhiainen M, Metso J, Somerharju P, Ehnholm C. The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion. Biochem J. 1996; 313 (Pt 1): 275-82, CrossRef.

Valle D, Beaudet al, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, et al. Familial Lipoprotein Lipase Deficiency, Apo C-II Deficiency, and Hepatic Lipase Deficiency. In: Brunzell JD, Deeb SS, editors. The online metabolic and molecular bases of inherited diseases (OMMBID). New York: McGraw-Hill; 2011, p.40, article.

Murakami M, Kudo I. New phospholipase A(2) isozymes with apotential role in atherosclerosis. Curr Opin Lipidol. 2003; 14: 431-6, CrossRef.

Magill P, Rao SN, Miller NE, Nicoll A, Brunzell J, St Hilaire J, et al. Relationships between the metabolism of high-density and very low-density lipoproteins in man: studies of apolipoprotein kinetics and adipose tissue lipoprotein lipase activity. Eur J Clin Invest. 1982; 12: 113-20, CrossRef.

Lookene A, Beckstead JA, Nilsson S, Olivecrona G, Ryan RO. Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism. J Biol Chem. 2005; 280: 25383-7, CrossRef.

Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry. 2007; 46: 3896-904, CrossRef.

Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 2008; 322: 1702-5, CrossRef.

Mineo C, Shaul PW. Functions of scavenger receptor class B, type I in atherosclerosis. Curr Opin Lipidol. 2012; 23: 487-93, CrossRef.

Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med. 2011; 17: 594-603, CrossRef.

Balazs Z, Panzenboeck U, Hammer A, Sovic A, Quehenberger O, Malle E, et al. Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro bloodbrain barrier model. J Neurochem. 2004; 89: 939-50, CrossRef.

Sunesen VH, Weber C, Hølmer G. Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction. Eur J Clin Nutr. 2001; 55: 115-23, CrossRef.

Behrens WA, Thompson JN, Madère R. Distribution of alphatocopherol in human plasma lipoproteins. Am J Clin Nutr. 1982; 35: 691-6, PMID.

Traber MG, Diamond SR, Lane JC, Brody RI, Kayden HJ. beta-carotene transport in human lipoproteins. Comparisons with a-tocopherol. Lipids. 1994; 29: 665-9, CrossRef.

Akanuma S, Yamamoto A, Okayasu S, Tachikawa M, Hosoya K. High-density lipoprotein-associated alpha-tocopherol uptake by human retinal pigment epithelial cells (ARPE-19 cells): the irrelevance of scavenger receptor class B, type I. Biol Pharm Bull. 2009; 32: 1131-4, CrossRef.

Tachikawa M, Okayasu S, Hosoya K. Functional involvement of scavenger receptor class B, type I, in the uptake of alpha-tocopherol using cultured rat retinal capillary endothelial cells. Mol Vis. 2007; 13: 2041-7, PMID.

Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007; 117: 746-56, CrossRef.

Alwaili K, Bailey D, Awan Z, Bailey SD, Ruel I, Hafiane A, et al. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim Biophys Acta. 2012; 1821: 405-15, CrossRef.

Wehmeier KR, Mazza A, Hachem S, Ligaray K, Mooradian AD, Wong NC, et al. Differential regulation of apolipoprotein A-I gene expression by vitamin D receptor modulators. Biochim Biophys Acta. 2008; 1780: 264-73, CrossRef.

Jaimungal S, Wehmeier K, Mooradian AD, Haas MJ. The emerging evidence for vitamin D-mediated regulation of apolipoprotein A-I synthesis. Nutr Res. 2011; 31: 805-12, CrossRef.

Krinsky NI, Mayne ST, Sies H. Carotenoids in Health and Disease. New York: Marcel Dekker; 2004, NLMID.

Shaish A, Daugherty A, O'Sullivan F, Schonfeld G, Heinecke JW. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest. 1995; 96: 2075-82, CrossRef.

Karlsson J, Diamant B, Theorell H, Folkers K. Ubiquinone and alpha-tocopherol in plasma: means of translocation or depot. Clin Investig. 1993; 71: S84-91, CrossRef.

Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of HDL lipidome. J Lipid Res. 2013; 54: 2950-63, CrossRef.

Tselepis AD, John Chapman M. Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atheroscler. 2002; 3: 57-68, CrossRef.

Bradamante S, Barenghi L, Giudici GA, Vergani C. Free radicals promote modifi cations in plasma high-density lipoprotein: nuclear magnetic resonance analysis. Free Radic Biol Med. 1992; 12: 193-203, CrossRef.

Marchesini N, Luberto C, Hannun YA. Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem. 2003; 278: 13775-83, CrossRef.

Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, et al. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem. 2001; 276: 34480-5, CrossRef.

Argraves KM, Argraves WS. HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res. 2007; 48: 2325-33, CrossRef.

Sattler K, Levkau B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res. 2009; 82: 201-11, CrossRef.

Smith JD. Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler Thromb Vasc Biol. 2010; 30: 151-5, CrossRef.

Soran H, Hama S, Yadav R, Durrington PN. HDL functionality. Curr Opin Lipidol. 2012; 23: 353-66, CrossRef.

Egom EE, Mamas MA, Soran H. HDL quality or cholesterol cargo: what really matters-spotlight on sphingosine-1-phosphate-rich HDL. Curr Opin Lipidol. 2013; 24: 351-6, CrossRef.

Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res. 2013; 54: 2575-85, CrossRef.

Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011; 13: 423-33, CrossRef.

Kontush A, Chapman MJ. Functionally defective HDL: a new therapeutic target at the crossroads of dyslipidemia, inflammation and atherosclerosis. Pharmacol Rev. 2006; 3: 342-74, CrossRef.

Kontush A, Chapman MJ. Antiatherogenic small, dense HDL - guardian angel of the arterial wall? Nat Clin Pract Cardiovasc Med. 2006; 3: 144-53, CrossRef.

Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol. 2006; 17: 247-57, CrossRef.

Oram JF, Lawn RM, Garvin MR, Wade DP. ABCA1 is the cAMPinducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem. 2000; 275: 34508-11, CrossRef.

Santamarina-Fojo S, Peterson K, Knapper C, Qiu Y, Freeman L, Cheng JF, et al . Complete genomic sequence of the human ABCA1 gene: analysis of the human and mouse ATP-binding cassette A promoter. Proc Natl Acad Sci USA. 2000; 97: 7987-92, CrossRef.

Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to highdensity lipoproteins. Proc Natl Acad Sci USA. 2004; 101: 9774-79, CrossRef.

Nakamura K, Kennedy MA, Baldán A, Bojanic DD, Lyons K, Edwards PA. Expression and regulation of multiple murine ATPbinding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. J Biol Chem. 2004; 279: 45980-9, CrossRef.

Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol. 2003; 23: 712-9, CrossRef.

Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC, et al. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem. 1997; 272: 20982-5, CrossRef.

Ramírez CM, Rotllan N, Vlassov AV, Dávalos A, Li M, Goedeke L, et al. Control of cholesterol metabolism and plasma HDL levels by miRNA-144. Circ Res. 2013; 112: 1592-601, CrossRef.

Moore KJ. microRNAs: small regulators with a big impact on lipid metabolism. J Lipid Res. 2013; 54: 1159-60, CrossRef.

Tall AR, Yvan-Charvet L, Westerterp M, Murphy AJ. Cholesterol efflux: a novel regulator of myelopoiesis and atherogenesis. Arterioscler Thromb Vasc Biol. 2012; 32: 2547-52, CrossRef.

Murphy AJ, Bijl N, Yvan-Charvet L, Welch CB, Bhagwat N, Reheman A, et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat Med. 2013; 19: 586-94, CrossRef.

Westerterp M, Murphy AJ, Wang M, Pagler TA, Vengrenyuk Y, Kappus MS, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res. 2013; 112: 1456-5, CrossRef.

Sorci-Thomas MG, Thomas MJ. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler Thromb Vasc Biol. 2012; 32: 2561-5, CrossRef.

Terasaka N, Westerterp M, Koetsveld J, Fernández-Hernando C, Yvan- Charvet L, Wang N, et al. ATP-binding cassette transporter G1 and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase. Arterioscler Thromb Vasc Biol. 2010; 30: 2219-25, CrossRef.

Kruit JK, Wijesekara N, Westwell-Roper C, Vanmierlo T, de Haan W, Bhattacharjee A, et al. Loss of both ABCA1 and ABCG1 results in increased disturbances in islet sterol homeostasis, inflammation, and impaired β-cell function. Diabetes. 2012; 61: 659-64, CrossRef.

Yancey PG, de la Llera-Moya M, Swarnakar S, Monzo P, Klein SM, Connelly MA, et al. High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J Biol Chem. 2000; 275: 36596-604, CrossRef.

Sankaranarayanan S, Oram JF, Asztalos BF, Vaughan AM, Lund-Katz S, Adorni MP, et al. Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J Lipid Res. 2009; 50: 275-84, CrossRef.

Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, et al. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest. 1991; 88: 2039-46, CrossRef.

Mackness M, Durrington PN, Mackness B. The role of paraoxonase 1 activity in cardiovascular disease: potential for therapeutic intervention. Am J Cardiovasc Drugs. 2004; 4: 211-7, CrossRef.

Garner B, Witting PK, Waldeck AR, Christison JK, Raftery M, Stocker R. Oxidation of high density lipoproteins. I. Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that accompanies lipid peroxidation and can be enhanced by alphatocopherol. J Biol Chem. 1998; 273: 6080-7, CrossRef.

Wong WM, Gerry AB, Putt W, Roberts JL, Weinberg RB, Humphries SE, et al. Common variants of apolipoprotein A-IV differ in their ability to inhibit low density lipoprotein oxidation. Atherosclerosis. 2007; 192: 266-74, CrossRef.

Ostos MA, Conconi M, Vergnes L, Baroukh N, Ribalta J, Girona J, et al. Antioxidative and antiatherosclerotic effects of human apolipoprotein A-IV in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2001; 21: 1023-8, CrossRef.

Tarnus E, Wassef H, Carmel JF, Rondeau P, Roche M, Davignon J, et al. Apolipoprotein E limits oxidative stress-induced cell dysfunctions in human adipocytes. FEBS Lett. 2009; 583: 2042-8, CrossRef.

Zerrad-Saadi A, Therond P, Chantepie S, Couturier M, Rye KA, Chapman MJ, et al. HDL3-mediated inactivation of LDLassociated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler Thromb Vasc Biol. 2009; 29: 2169-75, CrossRef.

Baker PW, Rye KA, Gamble JR, Vadas MA, Barter PJ. Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion molecule expression. J Lipid Res. 2000; 41: 1261-7, PMID.

Ashby DT, Rye KA, Clay MA, Vadas MA, Gamble JR, Barter PJ. Barter Factors infl uencing the ability of HDL to inhibit expression of vascular cell adhesion molecule-1 in endothelial cells. Arterioscler Thromb Vasc Biol. 1998; 18: 1450-5, CrossRef.

McGrath KC, Li XH, Puranik R, Liong EC, Tan JT, Dy VM, et al. Role of 3beta-hydroxysteroid-delta 24 reductase in mediating antiinflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler Thromb Vasc Biol. 2009; 29: 877-82, CrossRef.

Wu BJ, Chen K, Shrestha S, Ong KL, Barter PJ, Rye KA. Highdensity lipoproteins inhibit vascular endothelial inflammation by increasing 3beta-hydroxysteroid-Delta24 reductase expression and inducing heme oxygenase-1. Circ Res. 2013; 112: 278-88, CrossRef.

Rye KA, Bursill CA, Lambert G, Tabet F, Barter PJ. The metabolism and anti-atherogenic properties of HDL. J Lipid Res. 2009; 50: S195-200, CrossRef.

Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010; 21: 312-8, CrossRef.

Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, et al. Mechanisms underlying adverse effects of HDL on eNOSactivating pathways in patients with coronary artery disease. J Clin Invest. 2011; 121: 2693-708. CrossRef.

Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, et al. Highdensity lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med. 2001; 7: 853-57, CrossRef.

Drew BG, Fidge NH, Gallon-Beaumier G, Kemp BE, Kingwell BA. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci USA. 2004; 101: 6999-7004, CrossRef.

Kuvin JT, Rämet ME, Patel AR, Pandian NG, Mendelsohn ME, Karas RH. A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am Heart J. 2002; 144: 165-72, CrossRef.

Nofer JR, Assmann G. Atheroprotective effects of highdensity lipoprotein-associated lysosphingolipids. Trends Cardiovasc Med. 2005; 15: 265-71, CrossRef.

Kimura T, Sato K, Malchinkhuu E, Tomura H, Tamama K, Kuwabara A, et al. High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler Thromb Vasc Biol. 2003; 23: 1283-8, CrossRef.

Korporaal SJ, Meurs I, Hauer AD, Hildebrand RB, Hoekstra M, Cate HT, et al. Deletion of the high-density lipoprotein receptor scavenger receptor BI in mice modulates thrombosis susceptibility and indirectly affects platelet function by elevation of plasma free cholesterol. Arterioscler Thromb Vasc Biol. 2011; 31: 34-42, CrossRef.

Ma Y, Ashraf MZ, Podrez EA. Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. Blood. 2010; 116: 1932-41, CrossRef.

Khera AV, Rader DJ. Future therapeutic directions in reverse cholesterol transport. Curr Atheroscler Rep. 2010; 12: 73-81, CrossRef.

Tabet F, Rye KA. High-density lipoproteins, inflammation and oxidative stress. Clin Sci. 2009; 116: 87-98, CrossRef.

Speer T, Rohrer L, Blyszczuk P, Shroff R, Kuschnerus K. Abnormal high-densily lipoprotein induces endothelial dysfunction via activation of toll-like receptor-2. Immunity. 2013; 38: 754-68, CrossRef.

Mineo C, Shaul PW. Regulation of signal transduction by HDL. J Lipid Res. 2013; 54: 2315-24, CrossRef.

Nofer JR, van der Giet M, Tölle M, Wolinska I, von Wnuck Lipinski K, Baba HA, et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest. 2004; 113: 569-81, CrossRef.

Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 2008; 7: 365-75, CrossRef.

Rye KA, Barter PJ. Antiinflammatory actions of HDL: a new insight. Arterioscler Thromb Vasc Biol. 2008; 28: 1890-1, CrossRef.

Hessler JR, Robertson AL Jr, Chisolm GM 3rd. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis. 1979; 32: 213-29, CrossRef.

van Hinsbergh VW, Scheffer M, Havekes L, Kempen HJ. Role of endothelial cells and their products in the modification of lowdensity lipoproteins. Biochim Biophys Acta. 1986; 878: 49-64, CrossRef.

Ohta T, Takata K, Horiuchi S, Morino Y, Matsuda I. Protective effect of lipoproteins containing apoprotein A-I on Cu2+-catalyzed oxidation of human low density lipoprotein. FEBS Lett. 1989; 257: 435-8, CrossRef.

Parthasarathy S, Barnett J, Fong LG. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta. 1990; 1044: 275-83, CrossRef.

Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci USA. 1992; 89: 10316-20, CrossRef.

Proudfoot JM, Barden AE, Loke WM, Croft KD, Puddey IB, Mori TA. HDL is the major lipoprotein carrier of plasma F2-isoprostanes. J Lipid Res. 2009; 50: 716-22, CrossRef.

Hannson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352: 1685-95, CrossRef.

Navab M, Hama SY, Cooke CJ, Anantharamaiah GM, Chaddha M, Jin L, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J. Lipid Res. 2000; 41: 1481-94, PMID.

Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and betaamyloid peptides. Nat Genet. 1996; 14: 55-61, CrossRef.

Sacre SM, Stannard AK, Owen JS. Apolipoprotein E (apoE) isoforms differentially induce nitric oxide production in endothelial cells. FEBS Lett. 2003; 540: 181-7, CrossRef.

Ophir G, Amariglio N, Jacob-Hirsch J, Elkon R, Rechavi G, Michaelson DM. Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade. Neurobiol Dis. 2005; 20: 709-18, CrossRef.

Navab M, Hama-Levy S, Van Lenten BJ, Fonarow GC, Cardinez CJ, Castellani LW, et al. Mildly oxidized LDL induces an increased apolipoprotein J/paraoxonase ratio. J Clin Invest. 1997; 99: 2005- 19, CrossRef.

Recalde D, Ostos MA, Badell E, Garcia-Otin AL, Pidoux J, Castro G, et al. Human apolipoprotein A-IV reduces secretion of proinflammatory cytokines and atherosclerotic effects of a chronic infection mimicked by lipopolysaccharide. Arterioscler Thromb Vasc Biol. 2004; 24: 756-61, CrossRef.

Vowinkel T, Mori M, Krieglstein CF, Russell J, Saijo F, Bharwani S, et al. Apolipoprotein A-IV inhibits experimental colitis. J Clin Invest. 2004; 114: 260-9, CrossRef.

Shih DM, Gu L, Xia YR, Navab M, Li WF, Hama S, et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature. 1998; 394: 284-7, CrossRef.

Tward A, Xia YR, Wang XP, Shi YS, Park C, Castellani LW, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 2002; 106: 484-90, CrossRef.

Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation 2004; 109: II27-33, CrossRef.

Mineo C, Yuhanna IS, Quon MJ, Shaul PW. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem. 2003; 278: 9142-9, CrossRef.

Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999; 399: 601-5, CrossRef.

Feig JE, Shamir R, Fisher EA. Atheroprotective effects of HDL: beyond reverse cholesterol transport. Curr Drug Targets. 2008; 9: 196-203, CrossRef.

Yvan-Charvet L, Welch C, Pagler TA, Ranalletta M, Lamkanfi M, Han S, et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation. 2008; 118: 1837-47, CrossRef.

Zhu X, Lee JY, Timmins JM, Brown JM, Boudyguina E, Mulya A, et al. Increased cellular free cholesterol in macrophage-specific Abca1 knockout mice enhances pro-inflammatory response of macrophages. J Biol Chem. 2008; 283: 22930-41, CrossRef.

Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocytederived cells. Proc Natl Acad Sci USA. 2011; 108: 7166-71, CrossRef.

Smythies LE, White CR, Maheshwari A, Palgunachari MN, Anantharamaiah GM, et al. Apolipoprotein A-I mimetic 4F alters the function of human monocyte-derived macrophages. Am J Physiol Cell Physiol. 2010; 298: C1538-48, CrossRef.

Odegaard JI, Chawla A. Alternative macrophage activation and metabolism. Annu Rev Pathol. 2011; 6: 275-97, CrossRef.

Sanson M, Distel E, Fisher EA. HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS One. 2013; 8: e74676, CrossRef.

Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000; 20: 1262-75, CrossRef.

Libby P. The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med. 2008; 263: 517-27, CrossRef.

Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997; 336: 1276-82, CrossRef.

Dimmeler S, Hermann C, Zeiher AM. Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis? Eur Cytokine Netw. 1998; 9: 697-98, PMID.

Sugano M, Tsuchida K, Makino N. High-density lipoproteins protect endothelial cells from tumor necrosis factor-alpha-induced apoptosis. Biochem Biophys Res Commun. 2000; 272: 872-6, CrossRef.

Suc I, Escargueil-Blanc I, Troly M, Salvayre R, Nègre-Salvayre A. HDL and ApoA prevent cell death of endothelial cells induced by oxidized LDL. Arterioscler Thromb Vasc Biol. 1997; 17: 2158-66, CrossRef.

de Souza JA, Vindis C, Nègre-Salvayre A, Rye KA, Couturier M, Therond P, et al. Small, dense HDL 3 particles attenuate apoptosis in endothelial cells: pivotal role of apolipoprotein A-I. J Cell Mol Med. 2010; 14: 608-20, CrossRef.

Holzer M, Birner-Gruenberger R, Stojakovic T, El-Gamal D, Binder V, Wadsack C, et al. Uremia alters HDL composition and function. J Am Soc Nephrol. 2011; 22: 1331-41, CrossRef.

Holzer M, Zangger K, El-Gamal D, Binder V, Curcic S, Konya V, et al. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: Novel pathways generating dysfunctional high-density lipoprotein. Antioxid Redox Signal. 2012; 17: 1043-52, CrossRef.

Tölle M, Huang T, Schuchardt M, Jankowski V, Prüfer N, Jankowski J, et al. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc Res. 2012; 94: 154-62, CrossRef.

Weichhart T, Kopecky C, Kubicek M, Haidinger M, Döller D, Katholnig K, et al. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol. 2012; 23: 934-47, CrossRef.

Charakida M, Besler C, Batuca JR, Sangle S, Marques S, Sousa M, et al. Vascular abnormalities, paraoxonase activity, and dysfunctional HDL in primary antiphospholipid syndrome. JAMA 2009; 302: 1210-7, CrossRef.

McMahon M, Grossman J, FitzGerald J, Dahlin-Lee E, Wallace DJ, Thong BY, et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 2006; 54: 2541-9, CrossRef.

Weihrauch D, Xu H, Shi Y, Wang J, Brien J, Jones DW. Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice. Am J Physiol Heart Circ Physiol. 2007; 93: H1432-41, CrossRef.

de Souza JA, Vindis C, Hansel B, Nègre-Salvayre A, Therond P, Serrano CV Jr, et al. Metabolic syndrome features small, apolipoprotein A-I-poor, triglyceride-rich HDL3 particles with defective anti-apoptotic activity. Atherosclerosis. 2008; 197: 84-94, CrossRef.

Sorrentino SA, Besler C, Rohrer L, Meyer M, Heinrich K, Bahlmann FH, et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation. 2010; 121: 110-22, CrossRef.

Perségol L, Vergès B, Foissac M, Gambert P, Duvillard L. Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia. 2006; 49: 1380-6, CrossRef.

Riwanto M, Rohrer L, Roschitzki B, Besler C, Mocharla P, Mueller M, et al. Altered activation of endothelial anti- and pro-apoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of HDL-proteome remodeling. Circulation. 2013; 127: 891-904, CrossRef.

Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003; 108: 2751-6, CrossRef.

Kalantar-Zadeh K, Kopple JD, Kamranpour N, Fogelman AM, Navab M. HDL-inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int. 2007; 72: 1149-56, CrossRef.

Meiliana A, Wijaya A. HDL: more than cholesterol. Indones Biomed J. 2010; 2: 92-112, CrossRef.

Ferretti G, Bacchetti T, Nègre-Salvayre A, Salvayre R, Dousset N, Curatola G. Structural modifications of HDL and functional consequences. Atherosclerosis. 2006; 184: 1-7, CrossRef.

Cabana VG, Siegel JN, Sabesin SM. Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins. J Lipid Res. 1989; 30: 39-49, PMID.

Menschikowski M, Hagelgans A, Siegert G. Secretory phospholipase A2 of group IIA: is it an offensive or a defensive player during atherosclerosis and other inflammatory diseases? Prostaglandins Other Lipid Mediat. 2006; 79: 1-33, CrossRef.

Coetzee GA, Strachan AF, van der Westhuyzen DR, Hoppe HC, Jeenah MS, de Beer FC. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition. J Biol Chem. 1986; 261: 9644-51, PMID.

de Beer FC, de Beer MC, van der Westhuyzen DR, Castellani LW, Lusis AJ, Swanson ME, et al. Secretory non-pancreatic phospholipase A2: influence on lipoprotein metabolism. J Lipid Res. 1997; 38: 2232-9, PMID.

Rye KA, Duong MN. Influence of phospholipid depletion on the size, structure, and remodeling of reconstituted high density lipoproteins. J Lipid Res. 2000; 41: 1640-50, PMID.

Hedrick CC, Thorpe SR, Fu MX, Harper CM, Yoo J, Kim SM, et al. Glycation impairs high-density lipoprotein function. Diabetologia. 2000; 43: 312-20, CrossRef.

Calvo C, Talussot C, Ponsin G, Berthézène F. Non enzymatic glycation of apolipoprotein A-I. Effects on its self-association and lipid binding properties. Biochem Biophys Res Commun. 1988; 153: 1060-7, CrossRef.

Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, et al. Apolipoprotein A-I is a selective target for myeloperoxidasecatalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004; 114: 529-41, CrossRef.

Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012; 32: 2813-20, CrossRef.

Wu Z, Wagner MA, Zheng L, Parks JS, Shy JM 3rd, Smith JD, et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat Struct Mol Biol. 2007; 14: 861-8, CrossRef.

Shao B, Cavigiolio G, Brot N, Oda MN, Heinecke JW. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc Natl Acad Sci USA. 2008; 105: 12224-9, CrossRef.

Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003; 349: 1595-604, CrossRef.

Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001; 286: 2136-42, CrossRef.

Merck Newsroom [homepage on the Internet]. Kenilworth, NJ: Merck; 2012. Merck Announces HPS2-THRIVE Study of TREDAPTIVETM (Extended-Release Niacin/Laropiprant) Did Not Achieve Primary Endpoint [cited 2013 Dec 1]. Available from: http://www. mercknewsroom.com/.

Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ. 2009; 338: b92, CrossRef.

Heinecke JW. The HDL proteiome: a marker-and perhaps mediator-of coronary artery disease. J Lipid Res. 2009; 50 Suppl: S167-71, CrossRef.

Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004; 114: 529-41, CrossRef.

Mackey RH, Greenland P, Goff DC Jr, Lloyd-Jones D, Sibley CT, Mora S. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2012; 60: 508-16, CrossRef.

Van Lenten BJ, Navab M, Anantharamaiah GM, Buga GM, Reddy ST, Fogelman AM. Multiple indications for anti-inflammatory apolipoprotein mimetic peptides. Curr Opin Investig Drugs. 2008; 9: 1157-62, PMID.

DOI: https://doi.org/10.18585/inabj.v6i1.40

Copyright (c) 2014 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Indexed by:






The Prodia Education and Research Institute