The dtxR Gene: A New Alternative Marker to Identify Corynebacterium ulcerans and Corynebacterium pseudotuberculosis by PCR Assay

Sunarno Sunarno, Nyoman Fitri, Nelly Puspandari, Kambang Sariadji

Abstract


BACKGROUND: There are found some studies which reported the successfull of polymerase chain reaction (PCR) assay to identify Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. This study aimed to describe the dtxR gene profile as a new marker for C. ulceran and C. pseudotuberculosis for the PCR assay.

METHODS: Ten C. ulcerans and 35 C. pseudotuberculosis DNA sequences data registered in GeneBank was analyzed by bioinformatic tools. PCR primer was designed based on the concerved region and the gene similarity data. On the other hands, reference strains (C. ulcerans NCTC 12077 and Corynebacterium diphtheriae NCTC 3984) and dtxR gene of C. pseudotuberculosis (synthetic gene) were used in the PCR assay optimization for C. ulcerans and C. pseudotuberculosis identification.

RESULTS: The study showed that dtxR genes of both C. ulcerans and C. pseudotuberculosis were more conserve than pld gene, moreover dtxR gene was more specific compared to 16S rRNA gene. PCR assay with dtxR gene as a target could identify C. ulcerans and C. pseudotuberculosis accurately without mispriming, misamplification and misidentification.

CONCLUSION: dtxR gene could be used as marker to identify C. ulcerans and C. pseudotuberculosis by PCR assay.

KEYWORDS: C. pseudotuberculosis, C. ulcerans, dtxR gene, PCR


Full Text:

PDF SUPPLEMENT

References


Venezia J, Cassiday PK, Marini RP, Shen Z, Buckley EM, Peters Y, et al. Characterization of Corynebacterium species in macaques. J Med Microbiol. 2012; 61: 1401-8, CrossRef.

Wagner KS, White JM, Crowcroft NS, De Martin S, Mann G, Efstratiou A. Diphtheria in the United Kingdom, 1986-2008: the increasing role of Corynebacterium ulcerans. Epid Infec. 2010; 138: 1519-30, CrossRef.

Dias AASO, Santos LS, Sabbadini PS, Santos CS, Silva FCJr, Napoleao F, et al. Corynebacterium ulcerans diphtheria: an emerging zoonosis in Brazil and worldwide. Rev Saude Publica. 2011; 45: 1176-91, CrossRef.

Katsukawa C, Kawahara R, Inoue K, Ishii A, Yamagishi H, Kida K, et al. Toxigenic Corynebacterium ulcerans isolated from the domestic dog for the first time in Japan. Jpn J Infect Dis. 2009; 62: 171-2, PMID.

Marini RP, Cassiday PK, Vanezia J, Shen Z, Buckley EM, Peters Y, et al. Corynebacterium ulcerans in Ferrets. Emerg Infect Dis. 2014; 20: 159-61, CrossRef.

Berger A, Huber I, Merbecks SS, Ehrhard I, Konrad R, Hörmansdorfer S, et al. Toxigenic Corynebacterium ulcerans in woman and cat. Emerg Infect Dis. 2011; 17: 1767-9, CrossRef.

Eisenberg T, Mauder N, Contzen M, Rau J, Ewers C, Schlez K, et al. Outbreak with clonally related isolates of Corynebacterium ulcerans in a group of water rats. BMC Microbiology. 2015; 15: 42, CrossRef.

Hirai-Yuki A, Komiya T, Suzaki Y, Ami Y, Katsukawa C, Takahashi M, et al. Isolation and characterization of toxigenic Corynebacterium ulcerans from 2 closed colonies of Cynomolgus Macaques (Macaca fascicularis) in Japan. Comp Med. 2013; 63: 272-8, PMID.

Katsukawa C, Komiya T, Yamagishi H, Ishii A, Nishino S, Nagahama S, et al. Prevalence of Corynebacterium ulcerans in dogs in Osaka, Japan. J Med Mocrobiol. 2012; 61: 266-73, CrossRef.

Zavoshti FR, Khoojine ABS, Helan JA, Hassanzadeh B, Heydari AA. Frequency of caseous liphadenitis (CLA) in sheep slaughtered in an abattoir in Tabriz: comparison of bacterial culture and pathological study. Comp Clin Path. 2012; 21: 667-71, CrossRef.

Alharbi KB. Bacterial isolates from visceral abscesses of sheep at Qassim, Saudi Arabia. Afr J Microbiol Res. 2011; 5: 5622-7, CrossRef.

Saeed EM, Alharbi KB. Morel’s disease and caseous lymphadenitis: a literature review with special reference to Saudi Arabia. IOSRJAVS. 2014; 7: 76-86, CrossRef.

Hassan SS, Schneider MP, Ramos RT, Carneiro AR, Ranieri A, Guimarães LC, et al. Whole-genome sequence of Corynebacterium pseudotuberculosis strain Cp162, isolated from camel. J Bacteriol. 2012; 194: 5718-9, CrossRef.

Syame SM, Hakim AS, Hedia RH, Marie HSH, Selim SA. Characterization of virulence gene present in Corynebacterium pseudotuberculosis strains isolat from bufallo. Global Veterinaria. 2013; 10: 585-91, CrossRef.

Oliveira M, Barroco C, Mottola C, Santos R, Lemsaddek A, Tavares L, et al. First report of Corynebacterium pseudotuberculosis from caseous lymphadenitis lesions in Black Alentejano pig (Sus scrofa domesticus). BMC Veterinary Research. 2014; 10: 218, CrossRef.

Heggelund L, Gaustad P, Håvelsrud OE, Blom J, Borgen L, Sundset A, et al. Corynebacterium pseudotuberculosis pneumonia in a veterinary student infected during laboratory work. OFID. 2015 2: ofv053, CrossRef.

Bastos BL, Portela RWD, Dorella FA, Ribeiro D, Seyfert N, Castro TLP, et al. Corynebacterium pseudotuberculosis: Immunological responses in animal model and zoonotic potential. J Clin Cell Immunol. 2012; S4: 005, CrossRef.

Stefańska I, Gierynska M, Rzewuska M, Binek M. Survival of Corynebacterium pseudotuberculosis within macrophages and induction of phagocytes death. Pol J Vet Sci. 2010; 13: 143-9, PMID.

Hacker E. Characterization of Virulence of Corynebacterium ulcerans [Dissertation]. Erlangen: der Friedrich-Alexander-Universität Erlangen-Nürnberg; 2016, article.

Wagner KS, White JM, Lucenko I, Mercer D, Crowcrft NS, Neal S, et al. Diphtheria in the postepidemic period, Europe, 2000-2009. Emerg Infect Dis. 2012; 18: 217-25, CrossRef.

Wagner KS, Zakikhany K, White JM, Amirthalingam G, Crowcroft NS, Efstratiou A. Diphtheria surveillance. In: Burkovski A, Editor. Corynebacterium diphtheriae and Related Toxigenic Species. New York: Springer; 2014. p.207-24, CrossRef.

Wagner KS, White JM, Crowcroft NS, de Martin S, Mann G, Efstratieau A. Diphtheria in United Kingdom, 1986-2008: The increasing role of Corynebacterium ulcerans. Epidemiol Infect. 2010; 138: 1519-30, CrossRef.

Eisenberg T, Kutzer P, Peters M, Sing A, Contzen M, Rau J. Nontoxigenic tox-bearing Corynebacterium ulcerans infection among game animals, Germany. Emerg Infect Dis. 2014; 20: 448-52, CrossRef.

Komiya T, Seto Y, De Zoysa A, Iwaki M, Hatanaka A, Tsunoda A, et al. Two Japanese Corynebacterium ulcerans isolates from the same hospital: Ribotype, toxigenicity and serum antitoxin titre. J Med Microbiol. 2010; 59: 1497-504, CrossRef.

Vandentorren SV, Guiso N, Badell E, Boisrenoult P, Micaelo M, Troche G, et al. Toxigenic Corynebacterium ulcerans in a fatal human case and her feline contacs, Frence, March 2014. Euro Surveill. 2014; 19: 20910, CrossRef.

Nassar AFC, Daniel GT, Ruiz R, Miyashiro S, Scannapieco EM, Neto JS, et al. Diagnostic comparison of Corynebacterium pseudotuberculosis through microbiological culture and PCR in sheep samples. Arq Inst Biol. 2015; 82: 1-6, CrossRef.

Torres LDFC, Ribeiro D, Hirata R Jr, Pacheco LGC, Souza MC, Ribeiro MG, et al. Multiplex polymerase chain reaction to identify and determine the toxigenicity of Corynebacterium spp with zoonotic potential and an overview of human and animal infections. Mem Inst Oswaldo Cruz. 2013; 108: 272-9, CrossRef.

Sing A, Berger A, Schneider-Brachert W, Holzmann T, Reischl U. Rapid detection and molecular differentiation of toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans strains by Light Cycler PCR. J Clin Microbiol. 2011; 49: 2485-9, CrossRef.

Pacheco LGC, Pena RR, Castro TLP, Dorella FA, Bahia RC, Carminati R, et al. Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure culture and for rapid detection of this pathogen in clinical samples. J Med Microbiol. 2007; 56: 480-6, CrossRef.

Cassiday PK, Pawloski LC, Tiwari T, Sanden GN, Wilkins PP. Analysis of toxigenic Corynebacterium ulcerans strains revealing potential for false-negative real-time PCR results. J Clin Microbiol. 2008; 46: 331-3, CrossRef.

Thornton B, Basu C. Real-time PCR (qPCR) primer design using free online software. Biochem Mol Biol Educ. 2011; 39: 145-54, CrossRef.

Pimenta FP, Hirata R, Rosa ACP, Milagres LG and Mattos-Guaraldi AL. A multiplex PCR assay for simultaneous detection of Corynebacterium diphtheriae and differentiation between nontoxigenic and toxigenic isolates. J Med Microbiol. 2008; 57: 1438-9, CrossRef.

Wang B, Steain MC, Dwyer DE, Cunningham AL, Saksena NK. Synthetic ion oligonucleotides to generate artificial templates for use as positive controls in molecular assays: drug resistance mutations in influenza virus as an example. Virol J. 2011; 8: 405, CrossRef.

Lemmon GH, Gardner SN. Predicting the sensitivity and specificity of published real-time PCR assay. Ann Clin Microbiol Antimicrob. 2008; 7: 18, CrossRef.

Wollants E, Van Ranst M. Detection of false positives with a commonly used Norovirus RT-PCR primer set. J Clin Virol. 2013; 56: 84-5, CrossRef.

de Jesus Benevides L, Viana MV, Mariano DC, de Souza Rocha F, Bagano PC, Folador EL, et al. Genome sequence of Corynebacterium ulcerans strain FRC11. Genome Announc. 2015; 3: e00112-15, CrossRef.

Guimarães LC. Comparative Genomics and Pan-genomic Study of Genus Corynebacterium [Dissertation]. Belo Horizonte: Universidade Federal de Minas Gerais; 2015, article.

Boyle B, Dallaire N, MacKay J. Evaluation of the impact of single nucleotide polymorphisms and primer mismatches on quantitative PCR. BMC Biotechnology. 2009; 9: 75, CrossRef.

Meinel DM, Konrad R, Berger A, König C, Schmidt-Wieland T, Hogardt M, et al. Zoonotic transmission of toxigenic Corynebacterium ulcerans strain, Germany, 2012. Emerg Infect Dis. 2015; 21: 356-8, CrossRef.

Hall AJ, Cassiday PK, Bernard KA, Bolt F, Steigerwalt AG, Bixler D, et al. Novel Corynebacterium diphtheriae in domestic cats. Emerg Infect Dis. 2010; 16: 688-91, CrossRef.




DOI: https://doi.org/10.18585/inabj.v10i3.403

Copyright (c) 2018 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                   

 

 

The Prodia Education and Research Institute