Intervertebral Disc Degeneration and Low Back Pain: Molecular Mechanisms and Stem Cell Therapy

Anna Meiliana, Nurrani Mustika Dewi, Andi Wijaya

Abstract


BACKGROUND: Low back pain (LBP) mostly caused by disc degeneration, reflects to a tremendous of health care system and economy. More knowledge about these underlying pathologies will improve the opportunities that may represent critical therapeutic targets.

CONTENT: Basic research is advancing the understanding of the pathogenesis and management of LBP at the molecular and genetic levels. Cytokines such as matrix metalloproteinases, phospholipase A2, nitric oxide, and tumor necrosis factor-α are thought to contribute to the development of LBP. Mesenchymal stem cells (MSCs) transplant to cartilage-like cells and secrete extracellular matrix and encourage nucleus pulposus (NP) cell activity inhibiting NP cell apoptosis, together with some chemical mediators such as cytokines and growth factors become a safe and effective new strategy for intervertebral disc degeneration (IDD) treatment and regeneration.

SUMMARY: IDD occurs where there is a loss of homeostatic balance with a predominantly catabolic metabolic profile. A basic understanding of the molecular changes occurring in the degenerating disc is important for practicing clinicians to help them to inform patients to alter lifestyle choices, identify beneficial or harmful supplements, or offer new biologic, genetic, or stem cell therapies.

KEYWORDS: low back pain, intervertebral disc, degeneration, nucleus pulposus, annulus fibrosus, extracellular matrix, genetic, stem cells


Full Text:

PDF

References


Bogduk N, Twomey LT. Clinical Anatomy of the Lumbar Spine. New York: Churchill-Living-stone; 1987, NLMID.

Humzah MD, Soames RW. Human intervertebral disc: structure and function. Anat Rec. 1988; 220: 337-56, CrossRef.

Lundon K, Bolton K. Structure and function of the lumbar intervertebral disk in health, aging, and pathologic conditions. J Orthop Sports Phys Ther. 2001; 31: 291-306, CrossRef.

Alexander LA, Hancock E, Agouris I, Smith FW, MacSween A. The response of the nucleus pulposus of the lumbar intervertebral discs to functionally loaded positions. Spine. 2007; 32: 1508-12, CrossRef.

Deyo RA, Weinstein JN. Low back pain. N Engl J Med. 2001; 344: 363-70, CrossRef.

Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine. 2006; 31: 2151-61, CrossRef.

Boden SD, McCowin PR, Davis DO, Dina TS, Mark AS, Wiesel S. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990; 72: 1178-84, CrossRef.

Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med. 1994; 331: 69-73, CrossRef.

Cheung KM, Karppinen J, Chan D, Ho DWH, Song YQ, Sham P, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine. 2009; 34: 934-40, CrossRef.

De Schepper EIT, Damen J, van Meurs JBJ, Ginai AZ, Popham M, Hofman A, et al. The association between lumbar disc degeneration and low back pain: the influence of age, gender, and individual radiographic features. Spine. 2010; 35: 531-6, CrossRef.

Hamanishi C, Kawabata T, Yosii T, Tanaka S. Schmorl’s nodes on magnetic resonance imaging. Their incidence and clinical relevance. Spine. 1994; 19: 450-3, CrossRef.

Videman T, Battie MC, Gibbons LE, Maravilla K, Manninen H, Kaprio J. Associations between back pain history and lumbar MRI findings. Spine. 2003; 28: 582-8, CrossRef.

Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg. 1990; 72: 403-8, CrossRef.

Boos N, Rieder R, Schade V, Spratt KF, Semmer N, Aebi M. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine. 1995; 20: 2613-25, CrossRef.

Moneta GB, Videman T, Kaivanto K, Aprill C, Spivey M, Vanharanta H, et al. Reported pain during lumbar discography as a function of anular ruptures and disc degeneration. A re-analysis of 833 discograms. Spine. 1994; 19: 1968-74, CrossRef.

Videman T, Nurminen M. The occurrence of anular tears and their relation to lifetime back pain history: a cadaveric study using barium sulfate discography. Spine 2004; 29: 2668-76, CrossRef.

Peng B, Hou S, Wu W, Zhang C, Yang Y. The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J. 2006; 15: 583-7, CrossRef.

Freemont AJ, Peacock TE, Goupille P, Hoyland J, O’Brien J, Jayson M, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet. 1997; 350: 178-81, CrossRef.

Coppes MH, Marani E, Thomeer RTWM, Groen GJ. Innervation of “painful” lumbar discs. Spine. 1997; 22: 2342-9, CrossRef.

Freemont AJ, Watkins A, Le Maitre C, Baird P, Jeziorska M, Knight MTN, et al. Nerve growth factor expression and innervation of the painful intervertebral disc. J Pathol. 2002; 197: 286-92, CrossRef.

Olmarker K. Puncture of a lumbar intervertebral disc induces changes in spontaneous pain behavior: an experimental study in rats. Spine. 2008; 33: 850-5, CrossRef.

Kuslich SD, Ulstrom CL, Michael CJ. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am. 1991; 22: 181-7, PMID.

Stefanakis M, Al-Bassi M, Harding I, Pollintine P, Dolan P, Tartlon J, et al. Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine. 2012; 37: 1883-91, CrossRef.

Weber KT, Jacobsen TD, Maidhof R, Virojanapa J, Overby C, Bloom O, et al. Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics. Curr Rev Musculoscelet Med. 2015; 8: 18-31, CrossRef.

Leung VYL, Chan D, Cheung KMC. Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J. 2006; 15: S406-13, CrossRef.

Jeong JH, Lee JH, Jin ES, Min JK, Jeon SR, Choi KH. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir. 2010; 152: 1771-7, CrossRef.

Le Maitre CL, Baird P, Freemont AJ, Hoyland JA. An in vitro study investigating the survival and phenotype of mesenchymal stem cells following injection into nucleus pulposus tissue. Arthritis Res Ther. 2009; 11: R20, CrossRef.

Adams MA, McNally DS, Dolan P. ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br. 1996; 78: 965-72, CrossRef.

Hutton WC, Elmer WA, Bryce LM, Kozlowska EE, Boden SD, Kozlowski M. Do the intervertebral disc cells respond to di erent levels of hydrostatic pressure? Clin Biomech. 2001; 16: 728-34, CrossRef.

Raj PP. Intervertebral disc: anatomy-physiology-pathophysiologytreatment. Pain Pract. 2008; 8: 18-44, CrossRef.

Johannessen W, Cloyd JM, O’Connell GD, Vresilovic EJ, Elliott DM. Trans-endplate nucleotomy increases deformation and creep response in axial loading. Ann Biomed Eng. 2006; 34: 687-96, CrossRef.

OʼConnell GD, Johannessen W, Vresilovic EJ, Elliott DM. Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine. 2007; 32: 2860-8, CrossRef.

Roughley PJ, Melching LI, Heathfield TF, Pearce RH, Mort JS. The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J. 2006; 15: S326-32, CrossRef.

Vresilovic EJ, Johannessen W, Elliott DM. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery. J Biomech Eng. 2006; 128: 823-9, CrossRef.

Heuer F, Schmidt H, Wilke HJ. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J. Biomech. 2008; 41: 1953-60, CrossRef.

Guerin HL, Elliott DM. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J Orthop Res. 2007; 25: 508-16, CrossRef.

Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke HJ. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine. 2007; 32: 748-55, CrossRef.

Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Mod Mech. 2011; 4: 31-41, CrossRef.

Twomey LT, Taylor JR. Age changes in lumbar vertebrae and intervertebral discs. Clin Orthop. 1987; 224: 97-104, CrossRef.

Roberts S, Menage J, Urban JPG. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine. 1989; 14: 166-74, CrossRef.

Nerlich AG, Weiler C, Weissbach S, Schaaf R, Bachmeier BE, Paesold G, et al. Age-associated changes in the cell density of the human lumbar intervertebral disc. In: The 51st Annual Meeting of the Orthopaedic Research Society; Feb 20-23, 2005; Washington, DC, article.

Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine. 2004; 29: 2700-9, CrossRef.

Setton LA, Chen J. Cell mechanics and mechanobiology in the intervertebral disc. Spine. 2004; 29: 2710-23, CrossRef.

Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech. 2004; 37: 213-21, CrossRef.

Horner HA, Urban JP. Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine. 2001; 26: 2543-9, CrossRef.

Rajasekaran S, Naresh Babu J, Arun R, Armstrong BRW, Shetty AP, Murugan S. A study of diffusion in human lumbar discs. Spine. 2004; 29: 2654-67, CrossRef.

Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003; 92: 827-39, CrossRef.

Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004; 16: 558-64, CrossRef.

Duffy MJ, Lynn DJ, Lloyd AT, O'Shea CM. The ADAMs family of proteins: from basic studies to potential clinical applications. Thromb Haemost. 2003; 89: 622-31, PMID.

Tang BL. ADAMTS: A novel family of extracellular matrix proteases. Int J Biochem Cell Biol. 2001; 33: 33-44, CrossRef.

Porter S, Clark IM, Kevorkian L, Edwards DR. The ADAMTS metalloproteinases. Biochem J. 2005; 386: 15-27, CrossRef.

Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM. Matrix metalloproteinases and aggrecanase: Their role in disorders of the human intervertebral disc. Spine. 2000; 25: 3005-13, CrossRef.

Goupille P, Jayson MIV, Valat JP, Freemont AJ. Matrix metalloproteinases: The clue to intervertebral disc degeneration? Spine. 1998; 23: 1612-26, CrossRef.

Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest. 1996; 98: 996-1003, CrossRef.

Urban JP, Roberts S, Ralphs JR. The nucleus of the intervertebral disc from development to degeneration. Am Zool. 2000; 40: 53-61, CrossRef.

Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000; 275: 39027-31, CrossRef.

Roughley PJ. Biology of intervertebral disc aging and degeneration: Involvement of the extracellular matrix. Spine. 2004; 29: 2691-9, CrossRef.

Bradford DS, Oegema TR Jr, Cooper KM, Wakano K, Chao EY. Chymopapain, chemonucleolysis, and nucleus pulposus regeneration. A biochemical and biomechanical study. Spine. 1984; 9: 135-47, CrossRef.

Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P. Mechanical initiation of intervertebral disc degeneration. Spine. 2000; 25: 1625-36, CrossRef.

Kaigle AM, Holm SH, Hansson TH. Kinematic behavior of the porcine lumbar spine: A chronic lesion model. Spine. 1997; 22: 2796-806, CrossRef.

Nerlich AG, Bachmeier BE, Schleicher E, Rohrbach H, Paesold G, Boos N. Immunomorphological analysis of RAGE receptor expression and NF-kappaB activation in tissue samples from normal and degenerated intervertebral discs of various ages. Ann NY Acad Sci. 2007; 1096: 239-48, CrossRef.

Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J. 1998; 330: 345-51, CrossRef.

Sivan SS, Tsitron E, Wachtel E, Roughley P, Sakkee N, van der Ham F, et al. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degen- erate human intervertebral discs. Biochem J. 2006; 399: 29-35, CrossRef.

DeGroot J, Verzijl N, Bank RA, Lafeber FP, Bijisma JW, TeKoppele JM. Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation. Arthritis Rheum. 1999; 42: 1003-9, CrossRef.

Kim KW, Ha KY, Lee JS, Rhyu KW, An HS, Woo YK. The apoptotic effect of oxidative stress and antiapoptotic effect of caspase inhibitors on rat notochordal cells. Spine. 2007; 32: 2443-8, CrossRef.

Kadow T, Sowa G, Vo N, Kang JD. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res. 2015; 473: 1903-12, CrossRef.

An HS, Anderson PA, Haughton VM, Iatridis JC, Kang JD, Lotz JC, et al. Introduction: disc degeneration: summary. Spine. 2004; 29: 2677-8, CrossRef.

Kokkonen SM, Kurunlahti M, Tervonen O, Ilkko E, Vanharanta H. Endplate degeneration observed on magnetic resonance imaging of the lumbar spine: correlation with pain provocation and disc changes observed on computed tomography diskography. Spine. 2002; 27: 2274-8, CrossRef.

Johnson WE, Roberts S. Human intervertebral disc cell morphology and cytoskeletal composition: a preliminary study of regional variations in health and disease. J Anat. 2003; 203: 605-12, CrossRef.

Kirkaldy-Willis WH, Hill RJ. A more precise diagnosis for low-back pain. Spine. 1979; 4: 102-9, CrossRef.

Aoki Y, Ohtori S, Takahashi K, Ino H, Takahashi Y, Chiba T, et al. Innervation of the lumbar intervertebral disc by nerve growth factor-dependent neurons related to inflammatory pain. Spine. 2004; 29: 1077-81, CrossRef.

Lyons G, Eisenstein SM, Sweet MB. Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta. 1981; 673: 443-53, CrossRef.

Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine. 1995; 20: 1307-14, CrossRef.

Boxberger JI, Sen S, Yerramalli CS, Elliott DM. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J Orthop Res. 2006; 24: 1906-15, CrossRef.

Costi JJ, Stokes IA, Gardner-Morse MG, Iatridis JC. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine. 2008; 33: 1731-8, CrossRef.

Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine. 1995; 20: 2690-701, CrossRef.

O’Connell GD, Guerin HL, Elliott DM. Theoretical and experimental evaluation of human annulus fibrosus degeneration. J Biomech Eng. 2009; 131. 111007, CrossRef.

Vernon-Roberts B. Disc pathology and disease states. In: Ghosh P, editor. The Biology of the Intervertebral Disc. Boca Raton: CRC Press; 1988. p. 73-119, NLMID.

Moore RJ. The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J. 2006; 15 (Suppl 3): S333-7, CrossRef.

Roberts S, Urban JP, Evans H, Eisenstein SM. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine. 1996; 21: 415-20, CrossRef.

Nachemson A, Lewin T, Maroudas A, Freeman MAF. In vitro diffusion of dye through the end-plates and annulus fibrosus of human lumbar intervertebral discs. Acta Orthop Scand. 1970; 41: 589-607, CrossRef.

Ishihara H, Urban JP. Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res. 1999; 17: 829-35, CrossRef.

Ohshima H, Urban JPG. Effect of lactate concentrations and pH on matrix synthesis rates in the intervertebral disc. Spine. 1992; 17: 1079-82, CrossRef.

Lotz JC, Chin JR. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine. 2000; 25: 1477-83, CrossRef.

Race A, Broom ND, Robertson P. Effect of loading rate and hydration on the mechanical properties of the disc. Spine. 2000; 25: 662-9, CrossRef.

Allan DB, Waddell G. An historical perspective on low back pain and disability. Acta Orthop Scand Suppl. 1989; 234: 1-23, CrossRef.

Puustjarvi K, Takala T, Wang W, Tammi M, Helminen H, Inkinen R. Proteoglycans in the interverterbal disc of young dogs following strenuous running exercise. Conn Tiss Res. 1994; 30: 225-40, CrossRef.

Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine. 1999; 24: 996-1002, CrossRef.

Lotz JC, Colliou OK, Chin JR, Duncan NA, Lieben-berg E. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine. 1998; 23: 2493-506, CrossRef.

Osti OL, Vernon-Roberts B, Fraser RD. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine. 1990; 15: 762-7, CrossRef.

Lipson SJ, Muir H. Experimental intervertebral disc degeneration: morphologic and proteoglycan changes over time. Arthritis Rheum. 1981; 24: 12-21, CrossRef.

Heikkilä JK, Koskenvuo M, Heliövaara M, Kurppa K, Riihimäki H, Heikkilä K, et al. Genetic and environmental factors in sciatica. Evidence from a nationwide panel of 9365 adult twin pairs. Ann Med. 1989; 21: 393-8, CrossRef.

Matsui H, Kanamori M, Ishihara H, Yudoh K, Naruse Y, Tsuji H. Familial predisposition for lumbar degenerative disc disease. A case-control study. Spine. 1998; 23: 1029-34, CrossRef.

Varlotta GP, Brown MD, Kelsey JL, Golden AL. Familial predisposition for herniation of a lumbar disc in patients who are less than twenty-one years old. J Bone Joint Surg Am. 1991; 73: 124-8, CrossRef.

Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum. 1999; 42: 366-72, CrossRef.

Battie MC, Videman T, Gibbons LE, Fisher LD, Manninen H, Gill K. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine. 1995; 20: 2601-12, CrossRef.

Battie MC, Haynor DR, Fisher LD, Gill K, Gibbons LE, Videman T. Similarities in degenerative findings on magnetic resonance images of the lumbar spines of identical twins. J Bone Joint Surg Am. 1995; 77: 1662-70, CrossRef.

Watanabe H, Nakata K, Kimata K, Nakanishi I, Yamada Y. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan. Proc Natl Acad Sci USA. 1997; 94: 6943-7, CrossRef.

Li SW, Prockop DJ, Helminen H, Fassler R, Lapvetelainen T, Kiraly K, et al. Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev. 1995; 9: 2821-30, CrossRef.

Kimura T, Nakata K, Tsumaki N, Miyamoto S, Matsui Y, Ebara S, et al. Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthop. 1996; 20: 177-81, CrossRef.

Kawaguchi Y, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T. The association of lumbar disc disease with vitamin-D receptor gene polymorphism. J Bone Joint Surg Am. 2002: 84-A: 2022-8, CrossRef.

Videman T, Gibbons LE, Battie MC, Maravilla K, Vanninen E, Leppävuori J, et al. The relative roles of intragenic polymorphisms of the vitamin D receptor gene in lumbar spine degeneration and bone density. Spine. 2001; 26: E7-12, CrossRef.

Jones G, White C, Sambrook P, Eisman J. Allelic variation in the vitamin D receptor, lifestyle factors and lumbar spinal degenerative disease. Ann Rheum Dis. 1998; 57: 94-9, CrossRef.

Hoyland JA, Le MC, Freemont AJ. Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology. 2008; 47: 809-14, CrossRef.

Sandell LJ, Xing X, Franz C, Davies S, Chang L-W, Patra D. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis Cartilage. 2008; 16: 1560-71, CrossRef.

Le Maitre CL, Hoyland JA, Freemont AJ. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res Ther. 2007; 9: R83, CrossRef.

Le Maitre CL, Hoyland JA, Freemont AJ. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther. 2007; 9: R77, CrossRef.

Le Maitre CL, Freemont AJ, Hoyland JA. A preliminary in vitro study into the use of the inhibition of intervertebral disc degeneration. Int J Exp Pathol 2006; 87: 17-28, CrossRef.

Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the intervertebral disc degeneration. Arthritis Res Ther. 2005; 7: R732-45, CrossRef.

Purmessur D, Freemont AJ, Holyland AJ. Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc. Arthritis Res Ther. 2008; 10: R99, CrossRef.

Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, et al. Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum. 2009; 60: 482-91, CrossRef.

Dai SM, Shan ZZ, Nakamura H, Masuko-Hongo K, Kato T, Nishioka K, et al. Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum. 2006; 54: 818-31, CrossRef.

Yudoh K, Shi Y, Karasawa R. Angiogenic growth factors inhibit chondrocyte ageing in osteoarthritis: potential involvement of catabolic stress-induced overexpression of caveolin-1 in cellular ageing. Int J Rheum Dis. 2009; 12: 90-9, CrossRef.

Dumont P, Balbeur L, Remacle J, Toussaint O. Appearance of biomarkers of in vitro ageing after successive stimulation of WI-38 fibroblasts with IL-1alpha and TNF-alpha: senescence associated beta-galactosidase activity and morphotype transition. J Anat. 2000; 197: 529-37, CrossRef.

Roberts S, Evans EH, Kletsas D, Jaffray DC, Eisenstein SM. Senescence in human intervertebral discs. Eur Spine J. 2006; 15: 312-6, CrossRef.

Gruber HE, Ingram JA, Norton HJ, Hanley EN. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine. 2007; 32: 321-7, CrossRef.

Heathfield SK, Le Maitre CL, Hoyland JA. Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Res Ther. 2008; 10: R87. doi: 10.1186/ar2468, CrossRef.

Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: A possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther. 2007; 9: R45, CrossRef.

Adams MA. Biomechanics of back pain. Acupunct Med. 2004; 22: 178-88, CrossRef.

Patel AA, Spiker WR, Daubs M, Brodke D, Cannon-Albright LA. Evidence for an inherited predisposition to lumbar disc disease. J Bone Joint Surg Am. 2011; 93: 225-9, CrossRef.

Rodrigues-Pinto R, Richardson SM, Hoyland JA. Identifcation of novel nucleus pulposus markers: Interspecies variations and implications for cell-based therapies for intervertebral disc degeneration. Bone Joint Res. 2013; 2: 169-78, CrossRef.

Capossela S, Schlafli P, Bertolo A, Janner T, Stadler BM, Potzel T, et al. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins. Eur Cell Mater. 2014; 27: 251-63, CrossRef.

Biyani A, Anderson GBJ. Low back pain: pathophysiology and management. J Am Acad Orthop Surg. 2004; 12: 106-15, CrossRef.

Kim HJ, Studer RK, Sowa GA, Vo NV, Kang JD. Activated macrophage-like THP-1 cells modulate annulus fibrosus cell production of inflammatory mediators in response to cytokines. Spine. 2008; 33: 2253-9, CrossRef.

Koch A, Zacharowski K, Boehm O, Stevens M, Lipfert P, von Giesen HJ, et al. Nitric oxide and pro-inflammatory cytokines correlate with pain intensity in chronic pain patients. Inflamm Res. 2007; 56: 32-7, CrossRef.

Peng B, Wu W, Hou S, Li P, Zhang C, Yang Y. The pathogenesis of discogenic low back pain. J Bone Joint Surg Br. 2005; 87: 62-7, PMID.

Vernon-Roberts B, Moore RJ, Fraser RD. The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine. 2007; 32: 2797-804, CrossRef.

Melrose J, Roberts S, Smith S, Menage J, Ghosh P. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine. 2002; 27: 1278-85, CrossRef.

Freeman BJ, Fraser RD, Cain CM, Hall DJ, Chapple DC. A randomized, doubleblind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. Spine. 2005; 30: 2369-77, CrossRef.

Abe Y, Akeda K, An HS, Aoki Y, Pichika R, Muehleman C, et al. Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine. 2007; 32: 635-42, CrossRef.

Peng B, Hao J, Hou S, Wu W, Jiang D, Fu X, et al. Possible pathogenesis of painful intervertebral disc degeneration. Spine. 2006; 31: 560-6, CrossRef.

Aoki Y, Takahashi Y, Ohtori S, Moriya H, Takahashi K. Distribution and immunocytochemical characterization of dorsal root ganglion neurons innervating the lumbar intervertebral disc in rats: a review. Life Sci. 2004; 74: 2627-42, CrossRef.

Diamond J, Coughlin M, Macintyre L, Holmes M, Visheau B. Evidence that endogenous beta nerve growth factor is responsible for the collateral sprouting, but not the regeneration, of nociceptive axons in adult rats. Proc Natl Acad Sci USA. 1987; 84: 6596-600, CrossRef.

Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci. 1993; 13: 2136-48, PMID.

Woolf CJ, Ma QP, Allchorne A, Poole S. Peripheral cell types contributing to the hyperalgesic action of nerve growth factor in inflammation. J Neurosci. 1996; 16: 2716-23, PMID.

Ohtori S, Takahashi K, Moriya H. Existence of brain-derived neurotrophic factor and vanilloid receptor subtype 1 immunoreactive sensory DRG neurons innervating L5/6 intervertebral discs in rats. J Orthop Sci. 2003; 8: 84–7, CrossRef.

Ashton IK, Roberts S, Jaffray DC, Polak JM, Eisenstein SM. Neuropeptides in the human intervertebral disc. J Orthop Res. 1994; 12: 186-92, CrossRef.

Brown MF, Hukkanen MVJ, McCarthy ID, Redfern DRM, Batten JJ, Crock HV, et al. Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg Br. 1997; 79: 147-53, CrossRef.

Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar intervertebral discs in rats. Ann Anat. 2002; 184: 235-40, CrossRef.

García-Cosamalón J, Del Valle ME, Calavia MG, García-Suárez O, López-Muñiz A, Otero J, et al. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat. 2010; 217: 1-15, CrossRef.

Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc-content. Nat Rev Rheumatol. 2014; 10: 44-56, CrossRef.

Edgar MA. The nerve supply of the lumbar intervertebral disc. J Bone Joint Surg Br. 2007; 89: 1135-9, CrossRef.

Peng BG. Pathophysiology, diagnosis, and treatment of discogenic low back pain. World J Orthop. 2013; 4: 42-52, CrossRef.

Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine. 1999; 24: 2468-74, CrossRef.

Nachemson AL. Disc pressure measurements. Spine. 1981; 6: 93-7, CrossRef.

Johnson WEB, Caterson B, Eisenstein SM, Roberts S. Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine. 2005; 30: 1139-47, CrossRef.

Guinto Jr FC, Hashim H, Stumer M. CT demonstration of disk regression after conservative therapy. AJNR Am J Neuroradiol. 1984; 5: 632-3, PMID.

Keskil S, Ayberk G, Evliyaoglu C, Kizartici T, Yucel E, Anbarci H. Spontaneous resolution of “protruded” lumbar discs. Minim Invasive Neurosurg. 2004; 47: 226-9, CrossRef.

Hasue M, Fujiwara M. Epidemiologic and clinical studies of long- term prognosis of low-back pain and sciatica. Spine. 1979; 4: 150-5, CrossRef.

Komori H, Shinomiya K, Nakai O, Yamaura I, Takeda S, Furuya K. The natural history of herniated nucleus pulposus with radiculopathy. Spine. 1996; 21: 225-9, CrossRef.

Artificial intervertebral disc arthroplasty for treatment of degenerative disc disease of the cervical spine. Technol Eval Cent Asses Program Exec Summ. 2009; 24: 1-4, PMID.

Bono CM, Lee CK. Critical analysis of trends in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome. Spine. 2004; 29: 455-63, CrossRef.

Hwang SL, Hwang YF, Lieu AS, Lin CL, Kuo TH, Su YF, et al. Outcome analyses of interbody titanium cage fusio used in the anterior discectomy for cervical degenerative disc disease. J Spinal Disord Tech. 2005; 18: 326-31, CrossRef.

Karasek M, Bogduk N. Twelve-month follow-up of a controlled trial of intradiscal thermal anuloplasty for back pain due to internal disc disruption. Spine. 2000; 25: 2601-7, CrossRef.

Woods BJ, Vo N, Sowa G, Kang JD. Gene therapy for intervertebral disc degeneration. Orthop Clin N Am. 2011; 42: 563-74, CrossRef.

Kelsey JL, Githens PB, Walter SD, Southwick WO, Weil U, Holford TR, et al. An epidemiological study of acute prolapsed cervical intervertebral disc. J Bone Joint Surg Am. 1984; 66: 907-14, CrossRef.

Noponen-Hietala N, Kyllonen E, Mannikko M, Ilkko E, Karppinen J, Ott J, et al. Sequence variations in the collagen IX and XI genes are associated with degenerative lumbar spinal stenosis. Ann Rheum Dis. 2003; 62: 1208-14, CrossRef.

Pluijm SM, van Essen HW, Bravenboer N, Uitterlinden AG, Smit JH, Pols HA, et al. Collagen type I alpha1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann Rheum Dis. 2004; 63: 71-7, CrossRef.

Colombini A, Lombardi G, Corsi MM, Banfi G. Pathophysiology of the human intervertebral disc. Int J Biochem Cell Biol. 2008; 40: 837-42, CrossRef.

Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003; 5: 120-30, PMID.

Urban JP, McMullin JF. Swelling pressure of the inervertebral disc: influence of proteoglycan and collagen contents. Biorheology. 1985; 22: 145-57, PMID.

Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 2006; 88 (Suppl 2): 10-14, CrossRef.

Butler D, Trafimow JH, Andersson GB, McNeill TW, Huckman MS. Discs degenerate before facets. Spine. 1990; 15: 111-3, PMID.

Karppinen J, Shen FH, Luk KDK, Andersson GBJ, Cheung KMC, Samartzis D. Management of degenerative disk disease and chronic low back pain. Orthop Clin N Am. 2011; 42: 513-28, CrossRef.

Masuda K, Oegema TR Jr, An HS. Growth factors and treatment of intervertebral disc degeneration. Spine. 2004; 29: 2757-69, CrossRef.

Masuda K, An HS. Growth factors and the intervertebral disc. Spine J. 2004; 4: 330S-40S, CrossRef.

Ahn SH, Cho YW, Ahn MW, Jang SH, Sohn YK, Kim HS. mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine. 2002; 27: 911-7, CrossRef.

Burke JG, Watson RW, Conhyea D, McCormack D, Dowling FE, Walsh MG, et al. Human nucleus pulposus can respond to a pro-inflammatory stimulus. Spine. 3003; 28: 2685-93, CrossRef.

Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF 3rd, Evans CH. Herniated lumbar intervertebral discs spontaneously produce matrix metallopro- teinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine. 1996; 21: 271-7, CrossRef.

Weiler C, Nerlich AG, Bachmeier BE, Boos N. Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine. 2005; 30: 44-53, CrossRef.

Igarashi T, Kikuchi S, Shubayev V, Myers RR. Exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats. Spine. 2000; 25: 2975-80, CrossRef.

Olmarker K, Larsson K. Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine. 1999; 23: 2538-44, CrossRef.

Seguin CA, Pilliar RM, Roughley PJ, Kandel RA. Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine. 2005; 30: 1940-8, CrossRef.

Masuda K, An HS. Prevention of disc degeneration with growth factors. Eur Spine J. 2006; 15(Suppl 15): 422-32, CrossRef.

Setton LA, Bonassar LJ, Masuda K. Regeneration and replacement of the intervertebral disc. In: Robert L, Robert L, Joseph V, editors. Principles of Tissue Engineering. 3rd edition. Boston: Elsevier Academic Press; 2007. p. 877-96, NLMID.

Masuda K. Growth factors for intervertebral disc regeneration. In: Yue J, Bertagnoli R, McAfee P, An H, editors. Motion Preservation Surgery of The Spine: Advanced Techniques and Controversies. Philadelphia: Saunders/Elsevier; 2008. p. 649-61, NLMID.

Thompson JP, Oegema TJ, Bradford DS. Stimulation of mature canine intervertebral disc by growth factors. Spine. 1991; 16: 253-60, CrossRef.

Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr. Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res. 1997; 235: 13-21, CrossRef.

Osada R, Ohshima H, Ishihara H, Yudoh K, Sakai K, Matsui H, Tsuji H. Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res. 1996; 14: 690-9, CrossRef.

Masuda K. Biological repair of the degenerated intervertebral disc by the injection of growth factors. Eur Spine J. 2008; 17 (Suppl 4): S441-51, CrossRef.

Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GB, et al. Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res. 2003; 21: 922-30, CrossRef.

Yoon TS, Su Kim K, Li J, Soo Park J, Akamaru T, Elmer WA, Hutton WC. The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine. 2003; 28: 1773-80, CrossRef.

Imai Y, Miyamoto K, An HS, Thonar EJ, Andersson GB, Masuda K. Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells. Spine. 2007; 32: 1303-9, CrossRef.

Takegami K, Thonar EJ, An HS, Kamada H, Masuda K. Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1. Spine. 2002; 27: 1318-25, CrossRef.

Takegami K, An HS, Kumano F, Chiba K, Thonar EJ, Singh K, et al. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J. 2005; 5: 231-8, CrossRef.

Kim DJ, Moon SH, Kim H, Kwon UH, Park MS, Han KJ, et al. Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine. 2003; 28: 2679-84, CrossRef.

Gilbertson L, Ahn SH, Teng PN, Studer RK, Niyibizi C, Kang JD. The effects of recombinant human bone morphogenetic protein-2, recombinant human bone morphogenetic protein-12, and adenoviral bone morphogenetic protein-12 on matrix syn- thesis in human annulus fibrosis and nucleus pulposus cells. Spine J. 2008; 8: 449-56, CrossRef.

Li X, Leo BM, Beck G, Balian G, Anderson GD. Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine. 2004; 29: 2229-34, CrossRef.

Chujo T, An HS, Akeda K, Miyamoto K, Muehleman C, Attawia M, et al. Effects of growth differentiation factor-5 on the intervertebral disc — in vitro bovine study and in vivo rabbit disc degeneration model study. Spine. 2006; 31: 2909-17, CrossRef.

Videman T, Leppävuori J, Kaprio J, Battié MC, Gibbons LE, Peltonen L, et al. Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine. 1998; 23: 2477-85, PMID.

Cheung KMC, Chan D, Karppinen J, Chen Y, Jim JJT, Yip S-P, et al. Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine. 2006; 31: 1143-8, CrossRef.

Eser B, Cora T, Eser O, Kalkan E, Haktanır A, Erdogan MO, et al. Association of the polymorphisms of vitamin D receptor and aggrecan genes with degenerative disc disease. Genet Test Mol Biomarkers. 2010; 14: 313-7, CrossRef.

Mayer JE, Iatridis JC, Chan D, Qureshi SA, Gottesman O, Hecht AC. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 2013; 13: 299-317, CrossRef.

Vieira LA, De Marchi PL, dos Santos AA, Christofolini DM, Barbosa CP, Fonseca FLA, et al. Analysis of FokI polymorphism of vitamin D receptor gene in intervertebral disc degeneration. Genet Test Mol Biomarkers. 2014; 18: 625-9, CrossRef.

Li Y, Zhu J, Gao C, Peng B. Vitamin D receptor (VDR) genetic polymorphisms associated with intervertebral disc degeneration. J Genet Genomics. 2015; 42: 135-40, CrossRef.

Chan SC, Burki A, Bonel HM, Benneker LM, Gantenbein-Ritter B. Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy. Spine J. 2013; 13: 273-83, CrossRef.

Zhang YG, Guo X, Xu P, Kang LL, Li J. Bone mesenchymal stem cells transplanted into rabbit interver- tebral discs can increase proteoglycans. Clin Orthop Relat Res. 2005; 430: 219-26, CrossRef.

Chou AI, Reza AT, Nicoll SB. Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture. Tissue Eng Part A. 2008; 14: 2079-87, CrossRef.

Vadalà G, Studer RK, Sowa G, Spiezia F, Iucu C, Denaro V, et al. Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine. 2008; 33: 870-6, CrossRef.

Watanabe T, Sakai D, Yamamoto Y, Iwashina T, Serigano K, Tamura F, et al. Human nucleus pulposus cells significantly enhanced biological properties in a coculture system with direct cell-to-cell contact with autologous mesenchymal stem cells. J Orthop Res. 2009; 28: 623. doi: 10.1002/jor.21036, CrossRef.

Yang SH, Wu CC, Shih TT, Lin FH. In vitro study on interaction between human nucleus pulposus cells and mesenchymal stem cells through paracrine stimulation. Spine. 2008; 33: 1951-7, CrossRef.

Risbud MV, Albert TJ, Guttapalli A, Vresilovic EJ, Hillibrand AS, Vaccaro AR, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: Implications for cell-based transplantation therapy. Spine. 2004; 29: 2627-32, CrossRef.

Yang H, Wu J, Liu J, Ebraheim M, Castillo S, Liu X, et al. Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-beta1 decrease rabbit intervertebral disc degeneration. Spine J. 2010; 10: 802-10, CrossRef.

Blanco JF, Graciani IF, Sanchez-Guijo FM, Muntión S, Hernandez-Campo P, Santamaria C, et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: Comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine. 2010; 35: 2259-65, CrossRef.

Hohaus C, Ganey TM, Minkus Y, Meisel HJ. Cell transplantation in lumbar spine disc degeneration disease. Eur Spine J. 2008; 17(Suppl 4): 492-503, CrossRef.

Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, et al. Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res. 2008; 26: 589-600, CrossRef.

Henriksson HB, Svanvik T, Jonsson M, Hagman M, Horn M, Lindahl A, et al. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. Spine. 2009; 34: 141-8, CrossRef.

Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: Potential and limitations for stem cell therapy in disc regeneration. Spine 2005; 30: 2379-87, CrossRef.

Martin JT, Gorth DJ, Beattie EE, Harfe BD, Smith LJ, Elliott DM. Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration. J Orthop Res. 2013; 31: 1276-82, CrossRef.

Xi Y, Kong J, Liu Y, Wang Z, Ren S, Diao Z, et al. Minimally invasive induction of an early lumbar disc degeneration model in rhesus monkeys. Spine. 2013; 38: E579-86, CrossRef.

Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino J, Herzog R. Does discography cause accelerated progression of degeneration changes in the lumbar disc: a ten-year matched cohort study. Spine. 2009; 34: 2338-45, CrossRef.

Ho G, Leung VY, Cheung KM, Chan D. Effect of severity of intervertebral disc injury on mesenchymal stem cell-based regeneration. Connect Tissue Res. 2008; 49: 15-21, CrossRef.

Sakai D, Mochida J, Iwashina T, Hiyama A, Omi H, Imai M, et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials. 2006; 27: 335-45, CrossRef.

Yang F, Leung VYL, Luk KDK, Chan D, Cheung KM. Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse. J Pathol. 2009; 218: 113-21, CrossRef.

Rogers I, Yamanaka N, Bielecki R, Wong CJ, Chua S, Yuen S, et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res. 2007; 313: 1839-52, CrossRef.

Rogers IM, Yamanaka N, Casper RF. A simplified procedure for hematopoietic stem cell amplification using a serum-free, feeder cell-free culture system. Biol Blood Marrow Transplant. 2008; 14: 927-37, CrossRef.

Tam V, Rogers I, Chan D, leung VYL, Cheung KMC. A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk. J Orthop Res. 2014; 32: 819-25, CrossRef.

Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J. 2008; 8: 888-96, CrossRef.

Vadalà G, Sowa G, Hubert M, Gilbertson LG, Denaro V, Kang JD. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tissue Eng Regen Med. 2011; 6: 348-55, CrossRef.

Yim RLH, Lee JT, Bow CH, Meij B, Leung V, Cheung KMC, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev. 2014; 23: 2553-67, CrossRef.

Bhardwaj R, Midha R. Synchronous lumbar disc herniation in adult twins. Case report. Can J Neurol Sci. 2004; 31: 554-7, CrossRef.

Jim JJT, Noponen-Hietala N, Cheung KMC, Ott J, Karppinen J, Sahraravand A, et al. The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine. 2005; 30: 2735-42, CrossRef.

Noponen-Hietala N, Virtanen I, Karttunen R, Schwenke S, Jakkula E, Li H, et al. Genetic variations in IL6 associate with intervertebral disc disease characterized by sciatica. Pain. 2005; 114: 186-94, CrossRef.

Semba K, Araki K, Li Z, Matsumoto K, Suzuki M, Nakagata N, et al. A novel murine gene, sickle tail, linked to the Danforth’s short tail locus, is required for normal development of the intervertebral disc. Genetics. 2006; 172: 445-56, CrossRef.




DOI: http://dx.doi.org/10.18585/inabj.v10i1.426

Indexed by:

           

             

           

  

 

©2018, The Prodia Education and Research Institute. All rights reserved.