Mitochondria in Health and Disease

Anna Meiliana, Nurrani Mustika Dewi, Andi Wijaya

Abstract


BACKGROUND: Mitochondrial dysfunction known to be associated with most of human inherited disorders and diseases, including neurodegenerative disorders, cardiomyopathies, metabolic syndrome, muscle weakness, cancer, also obesity.

CONTENT: Mitochondria charges for multiple anabolic and catabolic circuitries, as the main provider for adenosine triphosphate (ATP). Mitochondria also responsible for cellwide stress responses and control non-apoptotic cell death routines, such as autophagy and regulated necrosis. In other words, mitochondria play an extended role in regulating cellular functions, both vital and lethal, from physiological metabolism to stress responses and death to maintain adult tissue homeostasis. Furthermore, mitochondria are crucial for both embryonic and postembryonic development. Therefore, any defect or alteration in mitochondria signaling pathways will lead to a large number of diseases in human, including premature aging, neurodegenerative disorders, muscle weakness, cardiovascular disorders, and cancer.

SUMMARY: Mitochondria perform a dynamic, integrated interconnected network, to maintain tissue homeostasis, beyond the cell boundaries and regulating cells and tissues communication. Certainly any mitochondrial dysfunction could direct to neurodegenerative diseases and metabolic disorders.

KEYWORDS: mitochondria, UPR, mitochondrial quality control, proteostasis, mitohormesis, mitochondrial diseases


Full Text:

PDF

References


Duchen MR, Szabadkai G. Roles of mitochondria in human disease. Essays Biochem. 2010; 47: 115-37, CrossRef.

Eisner V, Hajnoczky G. mitochondrial fusion dynamics in skeletal muscle. Abstracts of papers at the sixty-fifth annual meeting of the society of general physiologists: mitochondrial physiology and medicine. J Gen Physiol. 2011; 138: 131, article.

Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007; 8: 870-9, CrossRef.

Soubannier V, McBride HM. Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta. 2009; 1793: 154-70, CrossRef.

Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005; 280: 26185-92, CrossRef.

Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003; 160: 189-200, CrossRef.

Yu-Wai-Man P, Chinnery PF. Dysfunctional mitochondrial maintenance: what breaks the circle of life? Brain. 2012; 135: 9-11, CrossRef.

Chen H, Chan DC. Physiological functions of mitochondrial fusion. Ann NY Acad Sci. 2010; 1201: 21-5, CrossRef.

Frazier AE, Kiu C, Stojanovski D, Hoogenraad NJ, Ryan MT. Mitochondrial morphology and distribution in mammalian cells. Biol Chem. 2006; 387: 1551-8CrossRef.

Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009; 89: 799-845, CrossRef.

Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010; 11: 872-84, CrossRef.

Picard M, Shirihai OS, Gentil BJ, van Burelle. Mitochondrial morphology transitions and functions: implications for retrograde signaling? Am J Physiol Regul Integr Comp Physiol. 2013; 304: R393-406, CrossRef.

Viscomy C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim Biophys Acta. 2015; 1847: 544-57, CrossRef.

Chinnery PF. Mitochondrial Disorders Overview. In: Adam MP, Ardinger HH, Pagon RA, editors. Gene Reviews. Seattle: University of Washington; 2014. p.1993-2018, NLMID.

Ylikallio E, Suomalainen A. Mechanisms of mitochondrial diseases. Ann Med. 2012; 44: 41-59, CrossRef.

Boczonadi V, Horvath R. Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol. 2014; 48: 77-84, CrossRef.

Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012; 148: 1145-59, CrossRef.

Suomalainen A, Battersby BJ. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol. 2018; 19: 77-92, CrossRef.

Balaban RS. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol Cell Physiol. 1990; 258: C377-89, CrossRef.

Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004; 84: 277-359, CrossRef.

Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab. 2012; 23: 459-66, CrossRef.

Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 2014; 282: 647-72, CrossRef.

McKenzie M, Lazarou M, Ryan MT. Chapter 18 Analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits. Methods Enzymol. 2009; 456: 321-39, CrossRef.

Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010; 189: 211-21, CrossRef.

Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 2016; 284: 183-95, CrossRef.

Fraga H, Ventura S. Influence of cytoplasmatic folding on mitochondrial import. Curr Med Chem. 2015; 22: 2349-59, CrossRef.

Schulz C, Rehling P. Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation. Nat Commun. 2014; 5: 4349, CrossRef.

Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA. 2002; 99: 15983-7, CrossRef.

Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1- PGC-1alpha transcriptional complex. Nature. 2007; 450: 736-40, CrossRef.

Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127: 1109-22, CrossRef.

Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 2002; 296: 349-52, CrossRef.

Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003; 299: 896-9, CrossRef.

Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schubeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature. 2015; 528: 575-9, CrossRef.

Bruni F, Polosa PL, Gadaleta MN, Cantatore P, Roberti M. Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication. J Biol Chem. 2010; 285: 3939-48, CrossRef.

Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, et al. A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab. 2014; 20: 856-69, CrossRef.

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005; 434: 113-8, CrossRef.

Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol. 2015; 33: 8-13, CrossRef.

Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, et al. Oxygen radicals and human disease. Ann Intern Med. 1987; 107: 526-45, CrossRef.

Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014; 24: R453-62, CrossRef.

Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012; 48: 158-67, CrossRef.

Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014; 15: 411-21, CrossRef.

Quinlan CL, Treberg JR, Perevoshchikova IV, Orr AL, Brand MD. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radic Biol Med. 2012; 53: 1807-17, CrossRef.

Brandes RP, Weissmann N, Schroder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med. 2014; 76: 208-26, CrossRef.

Murphy M. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417: 1-13, CrossRef.

Muller F, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004; 279: 49064-73, CrossRef.

Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 2014; 19: 380-392, CrossRef.

Clapham DE. Calcium signaling. Cell. 2007; 131: 1047-58, CrossRef.

Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev Mol Cell Biol. 2003; 4: 517-29, CrossRef.

Rizzuto R, de Stefani D, Raffaello A, Mammucari C. Mitochondria as a sensors and regulators of calcium signaling. Nat Rev Mol Cell Biol. 2012; 13: 566-78, CrossRef.

McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990; 70: 391-425, CrossRef.

Hansford RG. Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr. 1994; 26: 495-508, CrossRef.

McCormack JG, Denton RM. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2‐oxoglutarate dehydrogenase complex. Biochem J. 1979; 180: 533-44, CrossRef.

Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long‐term metabolic priming. Proc Natl Acad Sci USA. 1999; 96: 13807-12, CrossRef.

Brini M, Pinton P, King MP, Davidson M, Schon EA, Rizzuto R. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nature Med. 1999; 5: 951-4, CrossRef.

Visch HJ, Rutter GA, Koopman WJH, Koenderink JB, Verkaart S, de Groot T, et al. Inhibition of mitochondrial Na+‐Ca2+ exchange restores agonist‐induced ATP production and Ca2+ handling in human complex I deficiency. J Biol Chem. 2004; 279: 40328-36, CrossRef.

Bernardi P, Paradisi V, Pozzan T, Azzone GF. Pathway for uncoupler‐induced calcium efflux in rat liver mitochondria: inhibition by ruthenium red. Biochemistry. 1984; 23: 1645-51, CrossRef.

Mela L. Inhibition and activation of calcium transport in mitochondria. Effect of lanthanides and local anesthetic drugs. Biochemistry. 1969; 8: 2481-6, CrossRef.

Bragadin M, Pozzan T, Azzone GF. Activation energies and enthalpies during Ca2+ transport in rat liver mitochondria. FEBS Lett. 1979; 104: 347-51, CrossRef.

Crompton M, Kunzi M, Carafoli E. The calcium‐induced and sodium‐induced effluxes of calcium from heart mitochondria. Evidence for a sodium‐calcium carrier. Eur J Biochem. 1977; 79: 549-58, CrossRef.

Pozzan T, Bragadin M, Azzone GF. Disequilibrium between steady‐state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry. 1977; 16: 5618-25, CrossRef.

Cox DA, Conforti L, Sperelakis N, Matlib MA. Selectivity of inhibition of Na+‐Ca2+ exchange of heart mitochondria by benzothiazepine CGP‐37157. J Cardiovasc Pharmacol. 1993; 21: 595-9, CrossRef.

Bertero E, Maack C. Calcium signaling and reactive oxygen species in mitochondria. Circ Res. 2018; 122: 1460-78, CrossRef.

Dolezal P, Likic V, Tachezy J, Lithgow, T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006; 313: 314-8, CrossRef.

Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007; 76: 723-49, CrossRef.

Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009; 138: 628-44, CrossRef.

Lill R. Function and biogenesis of iron-sulphur proteins. Nature. 2009; 460: 831-8, CrossRef.

Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 2010; 11, 655-67, CrossRef.

Hamza I, Dailey HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim Biophys Acta. 2012; 1823: 1617-32, CrossRef.

Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C. The protein import machinery of mitochondria—a regulatory hub in metabolism, stress, and disease. Cell Metab. 2014; 19: 357-72, CrossRef.

Quiros PM, Laber T, Lopez-Otin C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015; 16: 345-9, CrossRef.

Jiang Y, Wang X. Comparative mitochondrial proteomics: perspective in human disease. J Hematol Oncol. 2012; 5: 11, CrossRef.

Chen X, Li J, Hou J, Xie Z, Yang F. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases. Expert Rev Proteomics. 2010; 7: 333-45, CrossRef.

Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009; 43: 95-118, CrossRef.

Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011; 21: 92-101, CrossRef.

Baker MJ, Tatsuta T, Langer T. Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol. 2011; 3: a007559, CrossRef.

Baker BM, Haynes CM. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci. 2011; 36: 254-61, CrossRef.

Weber TA, Reichert AS. Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol. 2010; 45: 503-11, CrossRef.

Luce K, Weil AC, Osiewacz HD. Mitochondrial protein quality control systems in aging and disease. Adv Exp Med Biol. 2010; 694: 108-25, CrossRef.

Tatsuta T, Langer T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 2008; 27: 306-14, CrossRef.

Rugarli EJ, T. Langer. Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 2012; 31: 1336-49, CrossRef.

Anand R, Langer T, Baker MJ. Proteolytic control of mitochondrial function and morphogenesis. Biochim Biophys Acta. 2013; 1833: 195-204, CrossRef.

Haynes CM, Ron D. The mitochondrial UPR-protecting organelle protein homeostasis. J Cell Sci. 2010; 123: 3849-55, CrossRef.

Livnat-Levanon N, Glickman MH. 2010. Ubiquitin-proteasome system and mitochondria-reciprocity. Biochim Biophys Acta. 2010; 1809: 80-7, CrossRef.

Hoppins S, Lackner L, Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem. 2007; 76: 751-80, CrossRef.

Otera H, Mihara K. Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem. 2011; 149: 241-51, CrossRef.

Wasilewski M, Scorrano L. The changing shape of mitochondrial apoptosis. Trends Endocrinol Metab. 2009; 20: 287-94, CrossRef.

Martin SJ. Opening the cellular poison cabinet. Science. 2010; 330: 1330-1, CrossRef.

Chen H, Chan DC. Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet. 2009; 18: R169-76, CrossRef.

Youle RJ Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011; 12: 9-14, CrossRef.

Lightowiers RN, Taylor RW, Turnbull DM. Mutations causing mitochondrial disease: What is new and what challenges remain? Science. 2015; 349: 1494-9, CrossRef.

Rehling P, Model K, Brandner K, Kovermann P, Kovermann A, Meyer HE, et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science. 2003; 299: 1747-51, CrossRef.

Ahting U, Thun C, Hegerl R, Typke D, Nargang FE, Neupert W, et al. The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 1999; 147: 959-68, CrossRef.

Model K, Meisinger C, Kühlbrandt W. Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J Mol Biol. 2008; 383: 1049-57, CrossRef.

Saitoh T, Igura M, Obita T, Ose T, Kojima R, Maenaka K, et al. Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. EMBO J. 2007; 26: 4777-87, CrossRef.

Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM. Crystal structure of the mitochondrial chaperone TIM9•10 reveals a six-bladed α-propeller. Mol Cell. 2006; 21: 123-33, CrossRef.

Li J, Qian X, Hu J, Sha B. Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading. J Biol Chem. 2009; 284: 23852-9, CrossRef.

Albrecht R, Rehling P, Chacinska A, Brix J, Cadamuro SA, Volkmer R, et al. The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes. EMBO Rep. 2006; 7: 1233-8, CrossRef.

Mokranjac D, Bourenkov G, Hell K, Neupert W, Groll M. Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. EMBO J. 2006; 25: 4675-85, CrossRef.

Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H, Otwinowski Z, et al. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure. 2001; 9: 615-25, CrossRef.

Baker MJ, Frazier AE, Gulbis JM, Ryan MT. Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol. 2007; 17: 456-64, CrossRef.

Kang C, Li Ji L. Role of PGC-1alpha signaling in skeletal muscle health and disease, Ann NY Acad Sci. 2012; 1271: 110-17, CrossRef.

Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med. 2012; 53: 2043-53, CrossRef.

Wenz T. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion. 2013; 13: 134-42, CrossRef.

Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells, J Cell Biochem. 2006; 97: 673-683, CrossRef.

Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011; 1813: 1269-78, CrossRef.

Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA. 2004; 101: 6472-7, CrossRef.

Basu A, Lenka N, Mullick J, Avadhani NG. Avadhani, Regulation of murine cytochrome oxidase Vb gene expression in different tissues and during myogenesis. Role of a YY-1 factor-binding negative enhancer. J Biol Chem. 1997; 272: 5899-908, CrossRef.

Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC. PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol. 2006; 26: 7409-19, CrossRef.

Kotiadis VN, Duchen MR, Osellame LD. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta. 2014; 1840: 1254-65, CrossRef.

Jazwinski SM. The retrograde response: when mitochondrial quality control is not enough. Biochim Biophys Acta. 2013; 1833: 400-9, CrossRef.

Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012; 149: 274-93, CrossRef.

Wallace DC. Bioenergetic origins of complexity and disease. Cold Spring Harb Symp Quant Biol. 2011; 76: 1-16, CrossRef.

Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010; 51: 440-50, CrossRef.

Schapira AH. Mitochondrial diseases. Lancet. 2012; 379: 1825-34, CrossRef.

Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988; 331: 717-9, CrossRef.

Kabekkodu SP, Chakrabarty S, Shukla V, Varghese VK, Singh KK, Thangaraj K, et al. Mitochondrial biology: From molecules to diseases. Mitochondrion. 2015; 24: 93-8, CrossRef.

Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev Mol Cell Biol. 2009; 10: 458-67, CrossRef.

Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nature Cell Biol. 2010; 12: 814-22, CrossRef.

Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 2009; 28: 1589-600, CrossRef.

Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012; 337: 1062-5, CrossRef.

Scarffe LA, Stevens DA, Dawson VL, Dawspn TM. Parkin and PINK1: much more than mitophagy. Trends Neurosci. 2014; 37: 315-24, CrossRef.

Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010; 11: 45-51 , CrossRef.

Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, et al. Hereditary early‐onset Parkinson’s disease caused by mutations in PINK1. Science. 2004; 304: 1158-60, CrossRef.

Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998; 392: 605-8, CrossRef.

Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA. 2003; 100: 4078-83, CrossRef.

Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006; 441: 1157-61, CrossRef.

Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006; 441: 1162-6, CrossRef.

Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA. 2008; 105: 1638-43, CrossRef.

Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA. 2008; 105: 7070-5, CrossRef.

Deng H, Dodson MW, Huang H, Guo M. The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA. 2008; 105: 14503-8, CrossRef.

Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014; 15: 81-94, CrossRef.

Liu Z, Butow RA. Mitochondrial retrograde signaling. Annu Rev Genet. 2006; 40: 159-85, CrossRef.

Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2015; 26: 190-201, CrossRef.

Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger, C. The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab. 2014; 19: 357-72, CrossRef.

Shariff K, Ghosal S, Matouschek A. The force exerted by the membrane potential during protein import into the mitochondrial matrix. Biophys. J. 2004; 86: 3647-52, CrossRef.

van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N. A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr Biol. 2006; 16: 2271-6, CrossRef.

Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol. 2010; 694: 138-59, PMID.

Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol. 2010; 2: a004390, CrossRef.

Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011; 334: 1081-6, CrossRef.

Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 2014; 217: 136-43, CrossRef.

Jovaisaite V, Auwerx J. The mitochondrial unfolded protein response — synchronizing genomes. Curr Opin Cell Biol. 2015; 33: 74-81, CrossRef.

Taylor RC, Dillin A. Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol. 2011; 3: pii: a004440, CrossRef.

Schulz AM, Haynes CM. UPRmt-mediated cytoprotection and organismal aging. Biochim Biophys Acta. 2015; 1847: 1448-56, CrossRef.

Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013; 497: 451-7.

Wu Y, Williams Evan G, Dubuis S, Mottis A, Jovaisaite V, Houten, et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell. 2014; 158: 1415-30, CrossRef.

Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011; 144: 79-91, CrossRef.

Rath E, Berger E, Messlik A, Nunes T, Liu B, Kim SC, et al. Induction of dsRNA- activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut. 2012; 61: 1269-78, CrossRef.

Runkel ED, Liu S, Baumeister R, Schulze E. Surveillance-activated defenses block the ROS-induced mitochondrial unfolded protein response. PLoS Genet. 2013; 9: e1003346, CrossRef.

Liu Y, Samuel BS, Breen PC, Ruvkun G. Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature. 2014, 508: 406-10, CrossRef.

Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C, et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013; 154: 430-41, CrossRef.

Pirinen E, Canto C, Jo YS, Morato L, Zhang H, Menzies KJ, et al. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 2014; 19: 1034-41, CrossRef.

Baker BM, Nargund AM, Sun T, Haynes CM. Protective coupling of mitochondrial function and protein synthesis via the eIF2alpha kinase GCN-2. PLoS Genet. 2012; 8: e1002760, CrossRef.

Rainbolt TK, Atanassova N, Genereux JC, Wiseman RL. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab. 2013, 18: 908-19, CrossRef.

Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. Mitochondrial import efficiency of ATFS-1 regulates. Science. 2012; 337: 587-90, CrossRef.

Yun J, Finkel T. Mitohormesis. Cell Metab 2014; 19: 757-66, CrossRef.

Calabrese EJ, Baldwin LA. Defining hormesis. Hum Exp Toxicol. 2002; 21: 91-7, CrossRef.

Suomalainen A. Therapy for mitochondrial disorders: little proof, high research activity, some promise. Semin Fetal Neonatal Med. 2011; 16: 236-40, CrossRef.

Grady JP, Campbell G, Ratnaike T, Blakely EL, Falkous G, Nesbitt V, et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain. 2014; 137: 323-34, CrossRef.

Koopman WJ, Willems PH, Smeitink JA. Monogenic mitochondrial disorders. N Engl J Med. 2012; 366: 1132-41, CrossRef.

Ghezzi D, Zeviani M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol. 2012; 748: 65-106, CrossRef.

Fernandez-Vizarra E, Zeviani M. Nuclear gene mutations as the cause of mitochondrial complex III deficiency. Front Genet. 2015; 6: 134, CrossRef.

Fujikawa M, Sugawara K, Tanabe T, Yoshida M. Assembly of human mitochondrial ATP synthase through two separate intermediates, F-c-ring and b-e-g complex. FEBS Lett. 2015; 589: 2707-12, CrossRef.

Elguindy MM, Nakamaru-Ogiso E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2). J Biol Chem. 2015; 290: 20815-26, CrossRef.

Chinnery PF. Mitochondrial disease in adults: what’s old and what’s new? EMBO Mol Med. 2015; 7: 1503-12, CrossRef.

Nikkanen J, Forsström S, Euro L, Paetau I, Kohnz RA, Wang L, et al. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. Cell Metab. 2016; 23: 635-48, CrossRef.

Richter U, Lahtinen T, Marttinen P, Myöhänen M, Greco D, Cannino G, et al. A mitochondrial ribosomal and RNA decay pathway blocks cell proliferation. Curr Biol. 2013; 23: 535-41, CrossRef.

Bao XR, Ong SE, Goldberger O, Peng J, Sharma R, Thompson DA, et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife. 2016; 5: e10575, CrossRef.

Tyynismaa H1, Carroll CJ, Raimundo N, Ahola-Erkkilä S, Wenz T, Ruhanen H, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet. 2010; 19: 3948-58, CrossRef.

Dogan SA, Pujol C, Maiti P, Kukat A, Wang S, Hermans S, et al. Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab. 2014; 19: 458-69, CrossRef.

Yoshida H, Haze K, Yanagi H, Yura T, Mori K. identification of thecis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteinsJ Biol Chem. 1998; 273: 33741-9, CrossRef.

Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002; 21: 4411-9, CrossRef.

Chakrabarty S, Kabekkodu SP, Singh RP, Thangaraj K, Singh KK, Satyamoorthy K. Mitochondria in health and disease. Mitochondrion. 2018; 43: 25-9, CrossRef.




DOI: https://doi.org/10.18585/inabj.v11i1.779

Indexed by:

                 

                  

               

     

 

The Prodia Education and Research Institute