Vegetables Spices Fermentation Extract Inhibit NAFLD Development by Attenuation of Steatosis through Suppression of C/EBPα and TNFα mRNA Expression

Ermin Rachmawati¹, Maulidya Machdaniar¹,²,* Larasati Sekar Kinasih¹, Djanggan Sargowo³, Brillant Putra Syarifuddin¹, Fayza Cinta Rahmadina Putri⁴, Mahrus Ismail⁵

¹Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Locari, Krajan, Batu 65151, Indonesia
²Master Program of Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Jl. Veteran, Ketawanggede, Malang 65145, Indonesia
³Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Jl. Veteran, Ketawanggede, Malang 65145, Indonesia
⁴Bachelor Medical Program, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Locari, Krajan, Batu 65151, Indonesia
⁵Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Locari, Krajan, Batu 65151, Indonesia

*Corresponding author. Email: asyifaa@student.ub.ac.id

Received date: Feb 7, 2024; Revised date: Apr 19, 2024; Accepted date: Apr 23, 2024

Abstract

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), characterized by inflammation and steatosis, is one of the metabolic problems that trigger serious complications. Statin is usually used for NAFLD therapy, however, statin intolerance and resistance reduce the effectiveness of NAFLD treatment. Therefore, this study was conducted to develop the phytopharmaca against NAFLD by elucidating the anti-inflammatory and steatosis suppression of vegetable spices fermentation extract (VSFE) in rabbits induced with high-fat diet (HFD).

METHODS: Twenty New Zealand White rabbits were determined into 4 groups; which were groups receiving standard diet (SD), HFD, HFD and 100 mg/kgBW VSFE, as well as HFD and 200 mg/kgBW VSFE. mRNA expressions of tumor necrosis factor alpha (TNFα) and CCAAT/enhancer-binding protein alpha (C/EBPα) were evaluated. The TNFα concentration was quantified after protein and RNA isolation. Inflammation and steatosis were observed in liver hematoxylin-eosin-stained preparate using microscope.

RESULTS: Macrophage cells and hepatic steatosis showed significant decrease in a drug dependent manner. An effective dose of 200 mg/kgBW decreased C/EBPα and TNFα expression to 0.45±0.32 and 0.72±0.29 (p=0.013 and p=0.002, compared to the HFD group), respectively. TNFα inflammatory cytokine concentrations also responded to the administration of 100 mg/kgBW and 200 mg/kgBW doses, with the value of 31.72±10.40 mg/dL and 48.35±7.15 mg/dL (p=0.009 and p=0.002, compared to the HFD group), respectively.

CONCLUSION: VSFE might prevent NAFLD by inhibit steatosis and inflammation through suppression of C/EBPα expression and TNFα expression.

KEYWORDS: C/EBPα, TNFα, fermentation, steatosis, NAFLD

Indones Biomed J. 2024; 16(2): 189-98

Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by macrovesicular steatosis in 5% of hepatocytes without additional factors like drug or alcohol abuse.(1) Globally, NAFLD is the primary cause of chronic liver disease, with a prevalence of 25% (2), 5-30% of which is in Asian regions such as Sri Lanka, Malaysia and Indonesia (3). The United States recorded 8% of deaths caused by liver disease and
diabetes.(4) Consequently, NAFLD's high incidence is a concerning disease burden that needs further attention.

An important strategy in preventing NAFLD is dietary improvement (5), based on the fact that a high-fat diet causes abnormal accumulation of free fatty acids in the blood circulation and liver cells, which will induce endoplasmic reticulum (ER) stress (6). One consequence of ER stress is tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), which will attach to the cytosolic domain of inositol-requiring enzyme type 1 (IRE1)α. Then, as an initiator of the inflammatory process, the IRE1-TRAF2 complex activates the inhibitor of nuclear factor-κB kinase (IKK) and induces phosphorylation of the inhibitor of nuclear factor-κB (IκB). This causes nuclear factor-κB (NF-κB) to translocate into the nucleus towards the target gene and undergo transcription of antiapoptotic and inflammatory genes. In addition, the IRE1-TRAF2 complex can also activate c-Jun N-terminal kinases (JNK), which phosphorylate and activate activator protein 1 (AP-1). It therefore causes the synthesis of pro-inflammatory mediators like TNF, interleukin (IL)-6, and IL-1β.(7) Another consequence is that ER stress will activate IRE1, which leads to the splicing of X-box binding protein 1 (XBP1) and produces the potent transcription factor XBP1s, which encodes expression of unfolded protein response (UPR) gene target, namely the adipogenic factor C/EBP, which further cause droplet lipid accumulation.(7)

Currently, NAFLD therapy in the form of statins and lifestyle changes has not provided optimal results. There were reports regarding the incidence of hepatotoxicity, myopathy, neuropathy, cognitive decline, pancreatic malfunction, and sexual dysfunction when using statins for a long time.(8) In addition, statin resistance and intolerance are reasons for the discontinuation of statin therapy, thus reducing the effectiveness of NAFLD therapy. Statin intolerance can occur partially or totally. A total of 322/1500 patients (22.1%) discontinued statin therapy due to side effects and intolerance.(9,10) Therefore, efforts are urgently required to complete prevention strategies based on diet modification, in addition to the recommended therapies.

Several reports showed that consumption of vegetables such as cucumber (Cucumis sativus) and white cabbage (Brassica oleracea) had a hypolipidemic effect. However, based on previous studies, the serving of raw vegetables is easily oxidized, and boiling with improper methods could reduce the nutritional content of vegetables. Previous studies reported that fermentation of cucumber as pickles, and white cabbage as saurkraut could enhanced the bioavailability of secondary metabolites and antioxidant contents.(11) Previous study demonstrated that 14th day spontaneous fermentation of combination cucumber, white cabbage with additional condiment basil leaves (Ocimum sanctum) and spicy sauces from garlic (Allium sativum), shallot (Allium cepa), tomatoes (Lycopersicum esculentum), chili (Capsicum frutescens) had hypolipidemic effect.(12) Therefore, this study was conducted to investigate the benefits of fermented vegetables in preventing NAFLD through its work in modulating inflammatory and lipid signaling pathways which has not been done before.

Methods

Preparation of Vegetables Spices Fermentation Extract (VSFE)
Cabbage (Brassica oleracea), basil (Ocimum sanctum L.), cucumber (Cucumis sativus L.), tomatoes (Lycopersicum esculentum Mill), cayenne pepper (Capsicum frutescens), shallots (Allium cepa L.), and garlic (Allium sativum) obtained from traditional market in Malang, and determined by UPT Materia Medica Batu, Indonesia with reference No. 067/2250-55/102.20/2023, respectively.

The preparation of extract fermentation was stated in the previous study.(11) The cabbage was added with 3% salt overnight at 4°C. The next day, peeled cucumber and sliced basil leaves were mixed with the salted cabbage. The prepared chili sauce consisted of shallots, garlic, chilies, tomatoes, sugar and salt were added to the vegetables mixture and then placed in a closed sealed jar at 20°C for 14 days.(13) The fermented products were further ground into simplicia powder after being dried for five days at 60°C in a hot oven, and then extracted using the ultra-assisted extraction (UAE) method.(14) Following extraction, the plant extract was treated at 50°C in a rotary evaporator to produce extract concentrate. Then the extract was dried at 50°C in a hot oven until the mass settled. For the in vivo investigation, the determination of dose variation used with concentrations of 100 mg/kgBW and 200 mg/kgBW was made based on previous study.(15)

Animal Experiment Design
Twenty male New Zealand White rabbits aged 5-month-old from Animal Laboratory of Universitas Brawijaya, Malang, was used in this study. The rabbits were housed in 50 x 70 x 70 cm³ individual cages at 20°C with a light-dark cycle of 12:12 hours. The protocol of this study was approved by Ethical Committee of Universitas Brawijaya (No. 104-KEP-UB-2022).
The rabbits were fed with standard food Giant Feed (Wijaya Inti Nutrisi, Karanganyar, Indonesia) and water ad libitum. Following 2 weeks of acclimatization, rabbits were randomly carried out into 4 groups; standard diet (SD) group (n=5) that received a regular diet; high fat diet (HFD) group (n=5) that was fed 1% cholesterol without given extract; HFD+100VSFE group (n=5) that was fed with HFD and 100 mg/kgBW VSFE; as well as HFD+200VSFE group (n=5) that was fed with HFD and 200 mg/kgBW VSFE. After 8 weeks of treatment, all rabbits were terminated with anesthesia, and a surgical procedure was done to obtain the organs (Figure 1).

Animal Termination and Blood Sampling
Rabbits were subjected to a HFD and VSFE for 8 weeks. The rabbits underwent fasting for 24 hours and followed by termination, anesthesia was conducted with a ketamine and xylazine injection at a 1:1 ratio by subcutaneous injection of 0.1 mg/kgBW. Blood was collected through heart puncture, and anesthesia continued with inhalation of 15 mg/kgBW chloroform. The rabbits were then affixed to a dissecting board. The surgical process involved shaving the abdominal fur, cleansing with water, and making an incision from the abdomen to the chest using curved scissors. After exposing internal organs, the liver was extracted for further examination. This experimental protocol was performed to assess the impact of the high fat diet and VSFE extract on rabbit health, particularly focusing on hepatic observations.

Organ Sampling
Hepatic samples were collected following specific procedures: after terminating the rabbits, the liver was resected surgically. The liver was cleansed with cold 0.9% NaCl to remove blood residues. Subsequently, the liver was air-dried on filter paper and longitudinally sectioned into right and left lobes. Immediate incubation of the liver followed in 10% neutral buffered formalin (NBF) for 48 hours. This meticulous process aimed to ensure the cleanliness and preservation of hepatic tissues for subsequent analysis. The liver samples were prepared with precision, incorporating surgical, cleansing, and incubation steps, which are critical for maintaining the integrity of the hepatic specimens.

Histopathological Examination
The immersed hepatic tissue was dehydrated and embedded into paraffin block, then trimmed to a thickness of 5 µm. After that, deparaffinized using xylol and hydrated the tissue with graded alcohol concentrations. Tissues were stained with hematoxylin eosin (HE). Total number of 10 different fields of the preparation were examined under a Nikon Eclipse E200 binocular microscope (Nikon Instruments Inc., Melville, NY, USA) at 400x magnification. The results of the examination inflammatory cells are characterized by accumulation of aggregated macrophage cells. Observation of hepatic macrophages by counting the number of dots that were purple-black in color and hepatic steatosis by counting hepatocyte cells. Images were quantified using ImageJ (National Institutes of Health, Bethesda, MY, USA).

Assessment of TNFα, Serum Glutamic Oxaloacetic Transaminase (SGOT), and Serum Glutamate Pyruvate Transaminase (SGPT) Concentration
Samples for measuring TNFα concentration were collected
from protein isolation of liver tissue using commercially available sensitive Rabbit Tumor Necrosis Factor A, TNF-A ELISA kit (Cat. No. MDE0065Rb; MedikBio, Malang, Indonesia). Twenty serum samples were also collected for SGOT and SGPT analysis. Using a specific substrate and the enzyme activities of aspartate transaminase and alanine transaminase, the colorimetric approach was used to determine the quantities of SGOT and SGPT. Additionally, an absorbance of 340 nm was used to read the nicotinamide adenine dinucleotide (NADH) quantification. The EnzyChrom™ Aspartate Transaminase Assay Kit (Cat. No. MDASTR-100; MedikBio) was the commercial kit used for the SGOT assay. EnzyChrom™ Alanine Transaminase Assay Kit (Cat. No. MDALT-100; MedikBio) was utilized for the SGPT assay in the meantime. Previously, the protein isolate and serum stored at -80°C before examination to preserved protein structure and activity.\(^{19}\)

Gene Expression Quantification

The 20 mg liver was surgically removed right away, and it was stored at -80°C in TRIzol solution to protect the integrity of the RNA until gene expression analysis was performed. The total RNA Extraction Reagent (Cat. No. 15596026; Thermo Fisher, Waltham, MA, USA) was used to extract the total RNA. The cDNA synthesis was done by using a GoScript™ Reverse Transcriptase kit (Cat. No. A5001; Promega, Madison, WI, USA). Polymerase chain reaction (PCR) was conducted using MyGo PCR equipment. cDNA, particular primers, and GoTaq Master Mix (GoTaq 2-Step RT-qPCR System, Cat. No. A6010; Promega) were all included in each tube. The following primers were obtained from previous studies and then confirmed by NCBI.

\[
\begin{align*}
C/EBPa & : \text{Forward } 5'\text{-GCGGAACGAACACAT-3'} \\
& \quad \text{Reverse } 5'\text{-GGCGGTCTTGGTACCTGGTC-3'} \\
TNFa & : \text{Forward } 5'\text{-GCTTCTCTCCTACGCACC-3'} \\
& \quad \text{Reverse } 5'\text{-TGCGCTAGGGCTTGGACT-3'} \\
GAPDH & : \text{Forward } 5'\text{-GGAGAAAGCTGCTAA-3'} \\
& \quad \text{Reverse } 5'\text{-ACGACCTGGTCCTCGGTGA-3'}
\end{align*}
\]

Following the manufacture guidelines, PCR was performed with denaturation at 95°C for 15 seconds, Annealing adjusted to \(T_m\) of each gene for \(C/EBPa\) and \(TNFa\) at 53°C and 60°C, respectively (60 minutes). Ct values for each gene were calculated on the analysis software. The Livak formula \(2^{-\Delta\Delta Ct}\) was utilized to compute the relative expression.\(^{20}\)

Statistical Analysis

The effect of VSFE on steatosis, macrophage infiltration, and gene expressions in rabbit model NAFLD was performed in SPSS version 29.0 (IBM Corporation, Armonk, NY, USA) by one-way ANOVA test. A \(p<0.05\) was regarded as statistically significant (*), and \(p<0.01\) as highly statistically significant (**). Further analysis was carried out by post hoc test using LSD.

Results

VSFE Attenuated Macrophage Infiltration and Steatosis in Rabbits Supplemented with HFD

Pathological manifestation of NAFLD shown in this study were macrophage infiltration and steatosis, as shown in Figure 2 and Figure 3. The SD group showed the lowest number of macrophages at 2.90±0.308. Whereas HFD group demonstrated the highest number of macrophages at 13.72±2.446. The two treatment groups, both HFD+100VSFE and HFD+200VSFE, significantly decreased the number of macrophages with 8.18±0.664 and 4.62±0.704 \((p<0.001, \text{ compared to HFD group})\), respectively.

The development of steatosis in SD group obtained was 2.26±1.103, HFD group was 13.65±0.961, HFD+100VSFE group was 6.61±1.668, and HFD+200VSFE group was 4.94±1.277. It could be concluded that group SD had the least amount of steatosis, followed by groups HFD+200VSFE, HFD+100VSFE and HFD. According to the result, compared to the HFD group, VSFE significantly decreased the amount of steatosis with 100 mg/kgBW VSFE \((p<0.001)\) and 200 mg/kgBW VSFE \((p<0.001)\).

VSFE Decreased SGOT and SGPT Concentration in Rabbits Supplemented with HFD

SGOT and SGPT are liver enzymes that determine hepatic damage in NAFLD. One-way ANOVA test shows significant differences in SGOT and SGPT levels across all groups \((p=0.014 \text{ and } p<0.001)\) (Table 1). The highest value of SGOT was found in the HFD group (62.32±26.07 mg/dL). After administration of 100 mg/kgBW VSFE, SGOT level showed no significant difference with the HFD group \((p=0.270)\). Meanwhile, in the HFD+200VSFE group, the SGOT level decreased significantly to 21.41±7.83 mg/dL compared to the HFD group \((p=0.013)\). Conversely, the SGOT level of HFD+100VSFE group showed a significant difference compared to the SD group \((p=0.038)\), but not with HFD+200VSFE group \((p=0.553)\).
The results of the current study showed that the HFD group had the highest SGPT value (213.72±110.77 mg/dL). Following the administration of 100 mg and 200 mg/kgBW VSFE, the SGPT enzyme considerably decreased in comparison to the HFD group ($p<0.001$, for both). On the other hand, there was no significant difference in the SGPT levels between HFD+100VSFE and HFD+200VSFE when compared to the SD group ($p=0.720$ and $p=0.964$, respectively).

VSFE Alleviated mRNA Expression of C/EBPa in Rabbits Supplemented with HFD

VSFE administration significantly decreased $C/EBPa$ expression compared to the whole group ($p=0.009$). Based on the data collected there was a significant difference in the relative expression of $C/EBPa$ between the HFD group (2.28±0.55) and the SD group (0.68±0.22), with $p=0.026$. In the HFD+200VSFE group, the relative expression decreased to 0.45±0.32, which was significantly lower.

Figure 2. Liver histopathology showed that VSFE reduced macrophage infiltration. The 200 mg/kgBW VSFE considered more optimal than 100 mg/kgBW VSFE. Black arrows indicate presence of macrophages that appear as small circles in the black hepatic sinusoids. SD group showing no lobular inflammation; HFD group showing >4 foci lobular inflammation; HFD+100VSFE group showing 2–4 foci lobular inflammation; HFD+200VSFE group showing <2 foci lobular inflammation.

Figure 3. Liver histopathology demonstrated that VSFE could lessen steatosis in hepatocytes. Black arrows indicate the presence of lipid droplets in hepatocyte cells characterized by clear cells with nuclei in the center/edge. SD group showing little microsteatosis; HFD group showing many microsteatosis and macrosteatosis; HFD+100VSFE group showing many microsteatosis and little macrosteatosis; HFD+200VSFE group showing little microsteatosis and macrosteatosis.
Table 1. Liver enzyme profile animal model of NAFLD.

<table>
<thead>
<tr>
<th>Group</th>
<th>SGOT (mg/dL)</th>
<th>p-value</th>
<th>SGPT (mg/dL)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td></td>
<td>Mean±SD</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>12.57±1.26</td>
<td>0.014</td>
<td>27.16±1.81</td>
<td>0.001**</td>
</tr>
<tr>
<td>HFD</td>
<td>62.32±26.07</td>
<td></td>
<td>213.72±110.77</td>
<td></td>
</tr>
<tr>
<td>HFD+100VSFE</td>
<td>45.63±37.26</td>
<td></td>
<td>39.94±4.21</td>
<td></td>
</tr>
<tr>
<td>HFD+200VSFE</td>
<td>21.41±7.83</td>
<td></td>
<td>28.79±2.69</td>
<td></td>
</tr>
</tbody>
</table>

a, b, c, d represent significant difference (*p*<0.05) compared to SD, HFD, HFD+100VSFE, HFD+200VSFE groups, respectively.

VSFE Suppressed TNFα Expression in Rabbits Supplemented with HFD

The suppression of TNFα expression by VSFE exhibited statistical significance across all groups (*p*=0.003). Figure 5 displayed the relative expression of TNFα mRNA in the HFD group (2.01±0.95) and showed a significant difference when compared to the SD group (0.57±0.32). This study showed that VSFE was able to suppress the relative expression of TNFα at the 100 mg/kgBW and 200 mg/kgBW dose treatments, with relative expression values of 0.84±0.34 and 0.72±0.29, respectively. Both doses were significant compared to the HFD group (*p*=0.004 and *p*=0.002, respectively). On the other hand, treatment groups did not exhibit any significant difference in comparison to the SD group (*p*=0.452 and *p*=0.672).

VSFE Attenuated TNFα Concentration in Rabbits Supplemented with HFD

The reduction of TNFα by VSFE demonstrated statistically significant differences across all groups with *p*<0.001 (Figure 6). The test results showed that the HFD group had a final TNFα concentration of 66.87±5.79 mg/dL. Whereas the concentration of the SD group showed 28.22±6.37 mg/dL. The dose variance of 100 and 200 mg/kg BW VSFE treatment groups was able to suppress TNFα concentration to 31.72±10.40 mg/dL (*p*<0.009) and 31.72±10.40 mg/dL (*p*<0.002), respectively. The results were significant compared to the HFD group. HFD group and HFD+100VSFE group demonstrated a significant difference compared to the SD group (*p*<0.001, for both). Meanwhile, there was no significant difference for the HFD+200VSFE group (*p*=0.479).
The result showed that the administration of 1% cholesterol for 8 weeks in New Zealand White rabbit could induce steatosis, macrophage infiltration, and elevation of liver enzyme which is the hallmark of NAFLD. This findings were consistent with previous studies.(21,22) Two liver indicators that can indicate liver disease are SGOT and SGPT. This was discussed through a previous study that detected elevated liver enzymes ($p<0.01$) in HFD-induced rabbits.(23) As demonstrated by our research, liver enzyme levels considerably increased following HFD administration and markedly dropped in the VSFE-treated group.

In accordance with this study, VSFE decreased the amount of hepatic macrophages in rabbits with HFD. Several active compounds in the form of flavonoids and phenols act as antioxidants that could inhibit macrophage infiltration through the Toll-like receptor (TLR)-4 pathway so that the inflammatory response does not occur continuously.(22) Previous report described that one secondary metabolite in fermented extract was capsaicin, which could polarized macrophage liver to M2 more than M1.(24) Moreover, capsaicin worked through the transient receptor potential channel vanilloid type-1 (TRPV1) to enhance fat oxidation by inhibiting reactive oxygen species (ROS) production and modulating TNFα, thereby reducing triglyceride production in the liver. Antioxidants function by protecting against the damaging effects of ROS.(25)

Accumulated fat consumption from HFD exposure indicates an increase in lipid deposits in hepatocytes. The findings in this study are supported by previous research using fermented garlic extract in HFD-induced rats that was able to reduce hepatic steatosis and improve insulin resistance, accompanied by a decrease in liver triglyceride levels ($p<0.05$).(26) Additionally, fermented cabbage extract was equally successful in reducing lipid build-up in red-oil staining in another work involving NAFLD model rats with HFD induction ($p<0.05$).(27)

The molecular mechanism by which VSFE reduces lipid droplets and inhibits macrophage infiltration was also investigated in this study, presumably through the role of transcription factors C/EBPa. Recent study reported that C/EBPa is a transcription factor that is highly expressed in hepatocytes.(28) A short 5-UTR (5 untranslated region), a distinct protein coding (CDS) sequence (CDS-coding sequence), and a long 3-UTR make up the molecular basis of C/EBPa regulation.(29) When the C/EBPa gene's proximal promoter region was first identified, it revealed possible binding sites for NF-κB, nuclear factor (NF), upstream stimulating factor (USF), basic transcription element-binding protein (BTEB), and additional C/EBP genes. (30) Further down the signaling transduction, C/EBPa interaction with transcription factors NF-κB can controls cytokine production and cell survival.(31)

Moreover, active NF-κB translocates into the nucleus where it binds to targets of inflammatory genes to cause the release of inflammatory cytokines such TNFα, interleukin (IL)-1β, and IL-6, which aggravates steatohepatitis further. (7) Administration of naringenin extract in previous study, which is rich in flavonoids, can provide protective effects against steatosis and inflammation in hepatocytes. In addition, the mRNA expression levels of inflammatory genes such asTNFα, nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3), and IL-18 increased in the negative control group and decreased significantly in the treatment group with naringenin.(32)

Increased transcriptional activity of C/EBPa, directly regulates leptin expression and increases transforming growth factor (TGF)-β production and promotes fibrosis in mice kidney cells.(29) C/EBPa triggers adipogenesis by inducing peroxisome proliferator-activated receptor (PPAR)γ transcription and the two have a close relationship in influencing each other for adipogenesis and normal adipocyte function.(33) The mechanism by which C/EBPa induces PPARγ2 expression is through direct binding to a specific location in its promoter.(33,34) *Cornus officinalis*
extract at a dose of 2 μg/mL was able to suppress C/EBPα expression (p<0.05) but increased PPARγ expression in insulin-induced 3T3-L1 preadipocyte cells.(35) In line with this study, the increase in C/EBPα expression at the 100 mg/kgBW dose was higher than the HFD group and significantly decreased at the 200 mg/kgBW dose. It is hypothesized that the cross-interaction between C/EBPα and PPARγ indicates that the 100 mg/kgBW dose may increase PPARγ expression, which then modulates C/EBPα expression. Physiologically, the role of C/EBPα in responding to toxic lipid levels is by regulating lipogenesis through the unfolded protein response (UPR) pathway. (7) As another hypothesis proposed, VSFE 100 mg/kgBW through the unfolded protein response (UPR) pathway.

Physiologically, the role of C/EBPα in responding to toxic lipid levels is by regulating lipogenesis through the unfolded protein response (UPR) pathway. (7) As another hypothesis proposed, VSFE 100 mg/kgBW through the unfolded protein response (UPR) pathway.

In current study, the positive control as a standard marker in this study has not been implemented. In the future, C/EBPα and other transcription factors must be explored regarding their specific role in NAFLD disease. Knockdown or overexpression methods should be used to validate the target of the pathways involved in NAFLD at the transcriptional, translational, post-translational modification, and activation levels.

Conclusion

This study demonstrates that in rabbits fed with HFD and 200 mg/kgBW VSFE was able to attenuate SGOT and SGPT levels, which are a hallmark of liver steatosis, and lower the number of macrophages, suppress the relative expression of C/EBPα and TNFα. These findings provide a groundwork for further research in developing drug candidates as a therapies or agent preventing liver-related pathological conditions by harnessing the bioactive potential of herbal medicine into drug candidates.

Acknowledgments

The authors would like to thank Mrs. Suharti Suharti and Ms. Endah Eni who had facilitated us to run the procedural experimental analysis, Mr. and Mrs. Suadi Akhiriyanto for providing support to animal experiment and assistance during this study, as well as Mr. Satuman for providing materials used in this study.

This work was supported by funding agencies of Ministry of Research Technology and Higher Education (Grant: Riset Kolaborasi Indonesia (RKI) 2022, with grant No. 17.5.38/UN32.20.1/LT/2022).
Authors Contribution

ER were involved in conceptualization, supervision, and writing the original draft, formal analysis, methodology, investigation, MM performed data curation, formal analysis, conceptualization, writing the original draft, LSK did the supervision, conceptualization, formal analysis, methodology, BPS and FCR performed methodology and data curation, DJ and SS involved in concept supervision and funding. All the authors have been read, reviewed, and approve the entire manuscript.

References