Research Article

Lactiplantibacillus plantarum IS-10506 Enhances Tight Junction Integrity in Bronchial Epithelium: An Experimental Study

Deasy Fetarayani1, 2, Gatot Soegiarto3, Ingrid Suryanti Surono3, Anang Endaryanto4, Alpha Fardah Athiyyah4, Yetti Hernaningsih5, Dyah Fauziah6, I Ketut Sudiana6, Budi Utomo7, Cita Rosita Sigit Prakoeswa8,*

1Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No. 47, Surabaya 60132, Indonesia
2Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Jl. Prof. Dr. Moestopo No. 47, Surabaya 60132, Indonesia
3Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jl. K.H. Syahdan No. 9, Jakarta 11480, Indonesia
4Department of Child Health, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Jl. Prof. Dr. Moestopo No. 47, Surabaya 60132, Indonesia
5Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Jl. Prof. Dr. Moestopo No. 47, Surabaya 60132, Indonesia
6Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Jl. Prof. Dr. Moestopo No. 47, Surabaya 60132, Indonesia
7Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No. 47, Surabaya 60132, Indonesia
8Department of Dermatology and Venereology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Academic Hospital, Jl. Prof. Dr. Moestopo No. 47, Surabaya 60132, Indonesia

*Corresponding author. Email: cita-rosita@fk.unair.ac.id

Received date: Mar 9, 2024; Revised date: Mar 27, 2024; Accepted date: Apr 3, 2024

Abstract

BACKGROUND: Airway epithelium constitutes the initial structural defense against inhaled allergens, with its integrity primarily maintained through the formation of tight junctions (TJ) consisting of claudins, occludins, and zonula occludens (ZO). Currently, the effects of probiotics on airway TJ remain unclear. Therefore, this study was conducted to explore the impact of *Lactiplantibacillus plantarum* IS-10506, a native probiotic from Indonesia, on bronchial epithelial TJ in a mouse model of allergic airway inflammation.

METHODS: Twenty-four BALB/c mice were randomly assigned to three groups: negative control, positive control subjected to *Dermatophagoides pteronyssinus* (Der p) sensitization and challenge, and treatment group exposed to Der p and administered *L. plantarum* IS-10506 since one week before sensitization up to three weeks after. The expression levels of claudin-18, occludin, and ZO-1 were investigated through immunohistochemistry analysis and quantified based on the immunoreactive score (IRS).

RESULTS: The results of this study demonstrated that *L. plantarum* IS-10506 significantly enhanced the expressions of claudin-18, occludin, and ZO-1 (*p*<0.05).

CONCLUSION: These findings underscore the probiotic’s role in fortifying the integrity of airway TJ.

KEYWORDS: allergic inflammation, probiotic *Lactiplantibacillus plantarum*, immunology, respiratory system, tight junction, occludin, claudin, zonula occludens

Introduction

Alarming trends indicate a global increase in allergic diseases, including rhinitis and asthma, affecting countries worldwide.(1,2) While some advanced industrial nations have seen a stabilization in their prevalence, developing countries, including Indonesia, continue to experience a rise in allergic diseases.(3-5) This rapid escalation highlights the significant impact of environmental changes. The
"hygiene hypothesis" suggests that reduced family size and lower infection rates in early life contribute to this trend.(6) Similarly, the biodiversity hypothesis proposes that diminished exposure to the natural environment and environmental microbiota stimulation lead to inadequate immune system regulation.(7) This theory underscores the positive role of microbial exposure, polarizing the immune response toward T-helper (Th)1 rather than the Th2 response, known to be involved in allergic diseases. Recent systematic reviews have revealed a connection between reduced bacterial diversity and the development of allergic diseases.(8) Additionally, the concept of the gut-lung axis, which explores the interaction between the gastrointestinal and respiratory tracts, presents opportunities for manipulating the gastrointestinal system to benefit the respiratory tract.(9) Although this concept holds promise, it requires further validation to confirm its validity. In light of these perspectives, probiotic supplementation emerges as a potential option for preventing allergic respiratory diseases. Probiotics are live microorganisms that, when provided in sufficient doses, enhance the host's health.(10) Certain probiotics, particularly those from the Lactobacilli and Bifidobacteria genera, have been extensively researched as alternative options for preventing and treating allergic diseases.(11)

Lactiplantibacillus plantarum IS-10506 is a native Indonesian probiotic strain isolated from dadih, traditional fermented buffalo milk from Sumatera Barat.(12-14) Previous research has demonstrated that administering *L. plantarum* IS-10506 significantly reduced allergic reactions in BALB/c mice sensitized with ovalbumin (OVA), as well as in pediatric atopic dermatitis patients, and adults with atopic dermatitis.(15-17) Another strain namely *L. plantarum* IS-20506 revealed to significantly restore the expressions of Galectin-4 and Myosin-1a in the intestinal IS-20506 revealed to significantly restore the *L. plantarum* adults with atopic dermatitis.(15-17) Another strain namely (OV A), as well as in pediatric atopic dermatitis patients, and reactions in BALB/c mice sensitized with ovalbumin IS-10506 significantly reduced allergic *L. plantarum* Previous research has demonstrated that administering fermented buffalo milk from Sumatera Barat.(12-14) in this area.

The airway epithelium serves as the primary structural barrier against inhalant allergens. This protective function is primarily maintained through the formation of tight junctions (TJ) composed of essential proteins such as claudins, occludin, and zonula occludens (ZO), as well as adherens junctions (AJ) consisting of E-cadherin, β-catenin, and α-catenin.(19,20) Changes in TJ proteins, evidenced by decreased TJP1 (ZO-1) and claudin-18 mRNA expression, have been observed in mice exposed to house dust mite extract, inducing allergic airway inflammation. (21) Claudin-18 deficiency leads to epithelial barrier dysfunction, damage, and impaired alveolarization in mice. (22) This deficiency has also been identified in the airway cells of asthma patients.(23) These studies underscore the pivotal role of TJ proteins in the early stages of allergic asthma. Damage to the epithelial barrier can facilitate the entry of allergens into the airway epithelium, triggering the activation of the immune system and local inflammation, which are hallmark features of allergic diseases.(24) Consequently, the epithelial barrier represents a critical target in the prevention of allergic diseases.

Various published studies have primarily concentrated on the gastrointestinal tract when investigating the impact of probiotics on improving TJ. These studies include both *in vitro* experiments (25,26), *in vivo* tests with experimental animal models (27,28), as well as studies involving human subjects (29). Specifically, the effect of *L. plantarum* IS-10506 on gastrointestinal TJ repair was explored *in vivo* using Wistar rats induced by LPS from *Escherichia coli* serotype O55:B5. This study revealed an increased expression of occludin and ZO-1.(30) In contrast, research explaining the impact of probiotics on airway TJ remains quite limited. Currently, there is only one *in vitro* study where the stimulation of human bronchial epithelial cells Calu-3 with synthetic bacterial lipopeptide Pam3CysSK4 resulted in increased expression of claudin-1 and ZO-1. (31) Therefore, the precise role of probiotics on airway TJ remains unclear, emphasizing the need for further research in this area.

This study was conducted to investigate the impact of *L. plantarum* IS-10506 on the expression of constituting airway TJ proteins, specifically claudin-18, occludin, and ZO-1, aiming to prevent allergic airway inflammation. To model allergic airway inflammation, sensitization and exposure to the allergen *Dermatophagoides pteronyssinus* (Der p) were employed in this study.

Methods

Animal Models

The experimental units in this study were 24 adult male BALB/c mice (*Mus musculus*) aged 6-8 weeks, weighing between 20-35 grams, retrieved from PT Bio Farma (Jakarta, Indonesia). BALB/c mice were chosen for this study due to their suitability for modeling atopic allergic diseases in animals. They exhibit immune responses that tend to lean towards Th2 responses. The immune responses observed in BALB/c mice closely resemble the immune responses seen in human atopic individuals. The protocol of this study
was approved by the Animal Care and Use Committee, Faculty of Veterinary Medicine, Universitas Airlangga (No. 2.KE.113.09.2021).

Study Design and Experimental Groups

This was a true experimental study conducted on experimental animals using a post-test only control group design. The design was structured to assess the effects of the treatment on the experimental units, with measurements of variables taken after the administration of the treatment (Figure 1). C0 represented the normal control group (negative control), consisting of mice subjected to sham sensitization and sham challenge, and administered a placebo from 7 days before sensitization until day 27 after sensitization. C1 represented the positive control group, consisting of mice sensitized intraperitoneally with 500 AU of house dust mite allergen Der p and exposed to 500 AU of house dust mite allergen Der p through inhalation (mice model of allergic airway inflammation). They were administered a placebo since 7 days before sensitization until day 27 after sensitization. Meanwhile, T represented the treatment group, comprising mice sensitized intraperitoneally with 500 AU of house dust mite allergen Der p and exposed to 500 AU of house dust mite allergen Der p through inhalation (mice model of allergic airway inflammation). They were administered *L. plantarum* IS-10506 since 7 days before sensitization until day 27 after sensitization.

The microencapsulated powder of *L. plantarum* IS-10506 (GenBank accession number DQ860148; deposited in culture collection of Turku University, Finland) was administered via a gastric gavage at a dose of 300 mg (viability: 2.8-5.6 x 10^9 CFU) dissolved in 0.6 mL of distilled water per mouse per day for 35 days for the T group. The sensitization with 500 AU of Der p allergen (ALK Laboratories catalog number STDP-14999V, Port Washington, NY, USA) intraperitoneally was precipitated in 2 mg of aluminum hydroxide and consisted of two types of treatments. First, sham sensitization where only a phosphate buffered saline (PBS) solution was administered to the C0 group on day 0 and day 14, and second, sensitization with 500 AU of Der p allergen, which was administered to both the C1 and T groups on day 0 and day 14. Additionally, the Der p allergen at a dosage of 500 AU was administered through inhalation/aerosol via spontaneous breathing using a jet nebulizer. This process involved two types of treatments: Sham challenge (in this treatment, a PBS aerosol solution was administered as a sham challenge to the C0 group from day 21 to day 27) and Der p allergen exposure (500 AU; The C1 and T groups were exposed to Der p allergen at a dosage of 500 AU from day 21 to day 27).

The allocation of experimental units into each group was carried out through simple randomization using a draw. Each group was distinguished by markings on different cages, and each experimental unit was assigned a specific

![Figure 1. Flowchart of study design.](image-url)
code indicated by coloring specific parts of the mice's bodies. Subsequently, they were placed into their respective groups, namely C0, C1, and T.

TJ Proteins Expression Analyses Using Immunohistochemistry Approach

The main transmembrane proteins constituting the TJ were measured by counting the number of cells showing positive reactions to monoclonal antibodies against claudin-18 (Claudin 18 Recombinant Rabbit Monoclonal Antibody (34H14L15); Cat. No. 700178; Lot No. 2327296; Thermo Fisher Scientific, Waltham, MA, USA), occludin (Occludin Mouse Monoclonal Antibody (E-5) labeled with HRP (Horseradish Peroxidase); Cat. No. sc-133256 HRP; Lot No. L2017; Santa Cruz Biotechnology, Paso Robles, CA, USA) and ZO-1 (ZO-1 Rat Monoclonal Antibody (R40.76) labeled with HRP (Horseradish Peroxidase); Cat. No. sc-33725 HRP; Lot No. D1321; Santa Cruz Biotechnology) using the immunohistochemical examination technique on post-treatment mouse lung specimens.

Initially, the tissue sections were heated at 65°C for an hour before deparaffinization. The primary antibodies were diluted as required: Claudin 18 Recombinant Rabbit Monoclonal Antibody at a dilution of 1:400, Occludin Mouse Monoclonal Antibody (E-5) at a dilution of 1:400, and ZO-1 Rat Monoclonal Antibody (R40.76) HRP at a dilution of 1:400. A diaminobenzidine (DAB) solution was prepared by mixing one drop of DAB with 1 mL of substrate buffer.

The lung tissue samples were fixated in a 10% neutral buffered formaldehyde solution (formaldehyde-PBS), followed by a comprehensive dehydration process using a graded alcohol series (30%, 50%, 70%, 80%, 90%, and 96%), and absolute alcohol for 60 minutes at each concentration level. The samples were then cleared with xylene in two 60-minute steps before being embedded in paraffin for 24 hours. Serial sections of 4-6 μm thickness were then cut from the paraffin blocks using a microtome, and the best slices were selected for further processing. These sections were placed on polylysine-coated glass slides to ensure adherence. Deparaffinization was achieved through three successive xylene treatments, each lasting 5 minutes.

The tissue sections were then rehydrated in a descending alcohol series (absolute, 96%, 80%, and 70% alcohol), with each step lasting 4 minutes. Following rehydration, the sections are washed to remove any residual alcohol. Endogenous peroxidase activity was blocked by gently dabbing away excess water around the tissue sections, applying a peroxidase blocking reagent for 5 minutes, and then washing off the excess peroxidase with distilled water, gently agitating the staining jar holder.

Antigen retrieval was performed by placing the slides in a citrate buffer solution (pH 6) within a decloaking chamber, adjusting the temperature and incubation time as necessary, and allowing the slides to cool to room temperature. Background blocking was conducted by applying a protein block serum for 5 minutes. Primary staining involves applying one of the diluted primary antibodies (claudin 18, occludin, or ZO-1) to the marked areas on the slide, incubating overnight at 4°C washing with PBS, applying a secondary antibody for room temperature incubation for 10 minutes, followed by another PBS wash. The DAB solution was then applied for color development for 5 minutes, followed by a final wash in running water. Finally, counterstaining was performed by immersing the slides in Mayer's hematoxylin for 10 minutes at room temperature, followed by a wash in running water. The sections were then dehydrated through a series of alcohol baths (80%, 90%, and 96%), cleared in xylene, and finally mounted with a cover glass to preserve the staining.

The results were read semi-quantitatively using either the modified Remmele scale or the immunoreactive score (IRS), which is the product of the percentage score of immunoreactive cells and the color intensity score in these cells. The data for each sample represented the average IRS value observed in five different fields of view at 400x magnification. The semi-quantitative IRS scale was calculated as the product of the positive cell percentage score (A) and the color intensity score (B), where IRS = A x B. The positive cell percentage score (A) included: Score 0: No positive cells; Score 1: Positive cells ≤ 10%; Score 2: Positive cells 11-50%; Score 3: Positive cells 51-80%; Score 4: Positive cells > 80%. The color intensity reaction score (B) included: Score 0: No color reaction; Score 1: Low color intensity; Score 2: Moderate color intensity; Score 3: Strong color intensity.

Data Analysis

The research findings were presented in various forms: tables, graphs, text, or written explanations to describe the tables and graphs. To ensure consistency between observer 1 and observer 2 in interpreting immunohistochemical examination results, the study used Kappa statistics. Normality tests were conducted to determine whether the data followed a normal distribution. The Shapiro-Wilk test was utilized for this purpose, where a p > 0.05 indicates a normal distribution. Homogeneity tests were performed to assess variations between groups. Levene's test was used for
homogeneity testing, with a $p>0.05$ indicating homogeneous variances. To analyze the differences in effects among the three groups, several methods were employed based on the data's distribution and homogeneity: First, if the data were normally distributed and homogenous, one-way ANOVA was conducted, followed by post hoc LSD analysis if $p<0.05$. Second, if the data were normally distributed but not homogenous, Brown-Forsythe analysis was performed, followed by Games-Howell post hoc analysis if $p<0.05$. Third, if the data were not normally distributed, Kruskall-Wallis test was carried out, followed by Mann-Whitney post hoc analysis if $p<0.05$. Post hoc analyses were conducted to identify specific group differences. A $p<0.05$ indicated a statistically significant difference between groups.

Results

L. plantarum IS-10506 Increased Claudin-18 Expression in Mice with Allergic Airway Inflammation

The expression of claudin-18, a major transmembrane protein forming TJ in bronchial epithelium, was measured using immunohistochemical examination techniques. The results were quantified in IRS and assessed by two expert anatomical pathology specialists using a blinding method. A Kappa test was conducted to evaluate the observations of the two anatomical pathology experts, resulting in a Kappa value of 0.571, indicating weak consistency in observations. The IRS scores obtained were the average of the readings by both experts to enhance internal validity and reduce reading bias. The Shapiro-Wilk normality test results for claudin-18 expression in C0, C1, and T groups showed $p=0.157$, $p=0.369$, and $p=0.185$, respectively, indicating normal data distribution for all three groups (considered normal if $p>0.05$). The homogeneity of variance was confirmed through Levene's test with a $p=0.541$ ($p>0.05$), indicating homogeneous data variance among groups. Subsequently, a one-way ANOVA was performed, revealing significant differences among the groups with a $p=0.004$ ($p<0.05$), as shown in Table 2A.

The significant result from the one-way ANOVA test led to further post hoc analysis using LSD to determine specific differences between groups, as illustrated in Table 2B. Based on the post hoc analysis results in Table 2B, significant differences were found between C0 and T groups, as well as between C1 and T groups.

There was a significant increase in the expression of occludin in the group of mice with allergic airway inflammation model receiving *L. plantarum IS-10506* compared to the group of mice with allergic airway inflammation model without *L. plantarum IS-10506* supplementation. This indicated the influence of *L. plantarum IS-10506* administration on claudin-18 expression. The immunohistochemical examination results of bronchial epithelium expressing claudin-18 can be seen in Figure 2.

L. plantarum IS-10506 Increased Occludin Expression in Mice with Allergic Airway Inflammation

The expression of occludin, a transmembrane protein composing TJ in bronchial epithelium, was measured using immunohistochemical examination techniques. The results were quantified in IRS and assessed by two expert anatomical pathology specialists using a blinding method. A Kappa test was conducted to evaluate the observations of the two anatomical pathology experts, resulting in a Kappa value of 0.639, indicating moderate consistency in observations. The IRS scores obtained were the average of the readings by both experts to enhance internal validity and reduce reading bias. The Shapiro-Wilk normality test results for occludin expression in C0, C1, and T groups showed $p=0.157$, $p=0.369$, and $p=0.185$, respectively, indicating normal data distribution for all three groups (considered normal if $p>0.05$). The homogeneity of variance was confirmed through Levene's test with a $p=0.541$ ($p>0.05$), indicating homogeneous data variance among groups. Subsequently, a one-way ANOVA was performed, revealing significant differences among the groups with a $p=0.004$ ($p<0.05$), as shown in Table 2A.

The significant result from the one-way ANOVA test led to further post hoc analysis using LSD to determine specific differences between groups, as illustrated in Table 2B. Based on the post hoc analysis results in Table 2B, significant differences were found between C0 and T groups, as well as between C1 and T groups.

There was a significant increase in the expression of occludin in the group of mice with allergic airway inflammation model receiving *L. plantarum IS-10506* compared to the group of mice with allergic airway inflammation model without *L. plantarum IS-10506* administration and the normal control mice group. This indicates an influence of *L. plantarum IS-10506* administration on the expression of occludin. The results of immunohistochemical examination of bronchial epithelium expressing occludin can be observed in Figure 3.

L. plantarum IS-10506 Increased ZO-1 Expression in Mice with Allergic Airway Inflammation

ZO-1 is a scaffolding protein that regulates the stability of TJ in bronchial epithelium. In this study, it was measured...
Table 1. The difference in claudin-18 expression in bronchial epithelium.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean±SD</th>
<th>Median (min–max)</th>
<th>p-value</th>
<th>Post Hoc Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>6.500±3.162(^a)</td>
<td>7.000 (2.00–12.00)</td>
<td>0.021(^*)</td>
<td>C0 versus C1 0.220</td>
</tr>
<tr>
<td>C1</td>
<td>4.875±1.553 (^b)</td>
<td>4.000 (3.00–7.00) (^b)</td>
<td>0.253</td>
<td>C0 versus T</td>
</tr>
<tr>
<td>T</td>
<td>8.000±1.773 (^b)</td>
<td>8.000 (6.00–12.00) (^b)</td>
<td>0.003(^*)</td>
<td>C1 versus T</td>
</tr>
</tbody>
</table>

\(^a\)Normal distribution; \(^b\)Non-normal distribution; \(^*\)Significanct if \(p<0.05\). Number of mice in each group \(n=8\).

using immunohistochemical techniques. The results were interpreted in terms of IRS by two expert anatomical pathology readers employing a blinding method. Kappa statistics were employed to assess the consistency between the observations of the two anatomical pathology experts, yielding a Kappa value of 0.601, indicating moderate consistency in their observations. The IRS scores were derived as the average of readings from both experts to enhance internal validity and minimize reading bias. The Shapiro-Wilk normality test for ZO-1 expression in C0, C1, and T groups yielded \(p=0.122\), \(p=0.005\), and \(p=0.110\), respectively. It was concluded that there was a non-normal distribution of data in group C1 (considered normal if \(p>0.05\)). Subsequently, a Kruskall-Wallis test was conducted, revealing a significant difference among the groups with a \(p=0.001\) (\(p<0.05\)), as indicated in Table 3A.

Since the Kruskall-Wallis test yielded significant results, a post hoc Mann-Whitney analysis was conducted to determine which specific groups exhibited differences, as shown in Table 3B. Based on the post hoc analysis presented in Table 3B, significant differences were found between C0 and C1 groups, C0 and T groups, as well as C1 and T groups. Therefore, it can be concluded that there was a significant increase in ZO-1 expression in the group of mice with allergic airway inflammation model receiving \(L.\) \(plantarum\) IS-10506 compared to the group of mice with allergic airway inflammation model without \(L.\) \(plantarum\) IS-10506 administration and the normal control mice group. This indicates an influence of \(L.\) \(plantarum\) IS-10506 administration on ZO-1 expression. The results of immunohistochemical examination of bronchial epithelium expressing ZO-1 can be observed in Figure 4.
Table 2. The difference in occludin expression in bronchial epithelium.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean±SD</th>
<th>p-value</th>
<th>Group</th>
<th>Average difference</th>
<th>p-value</th>
<th>Confidence Interval (CI) 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>5.938±2.008</td>
<td>0.004*</td>
<td>C0 versus C1</td>
<td>1.813</td>
<td>0.106</td>
<td>-0.417 – 4.043</td>
</tr>
<tr>
<td>C1</td>
<td>4.125±1.642</td>
<td></td>
<td>C0 versus T</td>
<td>2.313</td>
<td>0.043*</td>
<td>-4.543 – -0.082</td>
</tr>
<tr>
<td>T</td>
<td>8.250±2.659</td>
<td></td>
<td>C1 versus T</td>
<td>4.125</td>
<td>0.001*</td>
<td>-6.355 – -1.895</td>
</tr>
</tbody>
</table>

*Significant if p<0.05. Number of mice in each group n=8.

Discussion

This study aimed to investigate the effect of *L. plantarum* IS-10506 on the expression of airway TJ proteins as a potential preventive measure against allergic inflammation in the respiratory tract. In this research, a murine model of allergic airway inflammation was utilized, specifically employing BALB/c mice due to their genetic predisposition towards Th2 immune responses.(32) BALB/c mice were intraperitoneally sensitized and exposed to aerosolized Der p allergen, the primary inhalant allergen associated with asthma and allergic rhinitis. Allergic inflammation serves as a pathological hallmark of inflammatory diseases, including asthma.(33) The results of our study demonstrate that *L. plantarum* IS-10506 enhances the expression of claudin-18, occludin, and ZO-1 proteins in the bronchial epithelium, as assessed through immunohistochemical methods. To the best of our knowledge, this study represents the first *in vivo* research on experimental animals to investigate the probiotic influence on the expression of TJ proteins in the respiratory tract epithelium.

The TJ proteins examined in this study within the bronchial epithelium include claudin-18, occludin, and ZO-1. Claudins, as transmembrane proteins, serve as the primary functional units in TJ, mediating epithelial barrier functions throughout the upper and lower respiratory tracts.(24) Among the non-classical claudins, claudin-18 is predominantly expressed in the lungs.(34) Classified as a barrier-forming claudin, claudin-18 restricts the movement

Figure 3. Immunohistochemical staining of bronchial epithelium expressing occludin. Brown coloration (indicated by red arrows) represents bronchial epithelium expressing occludin. A: Bronchial epithelium expressing occludin with moderate color intensity in C0 group; B: Bronchial epithelium expressing occludin with low color intensity in C1 group; C: Bronchial epithelium expressing occludin with strong color intensity in T group. Red bar: 50 µm.
Table 3. The difference in ZO-1 expression in bronchial epithelium.

<table>
<thead>
<tr>
<th>Group</th>
<th>IR Score of ZO-1</th>
<th>Post Hoc Analysis</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>5.625±2.460 a</td>
<td>6.500 (2.00–8.00)</td>
<td>0.001*</td>
</tr>
<tr>
<td>C1</td>
<td>4.125±1.275</td>
<td>4.000 (2.50–7.00) b</td>
<td>0.008*</td>
</tr>
<tr>
<td>T</td>
<td>9.187±1.888 a</td>
<td>9.000 (7.00–12.00)</td>
<td>0.001*</td>
</tr>
</tbody>
</table>

*Normal distribution; bNon-normal distribution; *Significant if p<0.05. Number of mice in each group n=8.

The influence of *L. plantarum* IS-10506 on the improvement of TJ in the gastrointestinal tract has been studied in Wistar rats induced with LPS from *E. coli*, which found an increase in the expression of occludin and ZO-1. The mechanism underlying this improvement occurred through simultaneous activation of the ERK1/MAPK and JNK/ MAPK signaling pathways. A previous *in vitro* study involved the stimulation of human bronchial epithelial cells (Calu-3) with synthetic bacterial lipopeptide Pam3CysSK4, resulting in increased expression of claudin-1 and ZO-1, as examined using immunofluorescence methods. This study concluded that enhanced TJ barrier function was induced by toll-like receptor (TLR)2 stimulation, subsequently leading to atypical protein kinase C (PKC)ζ phosphorylation. This atypical PKCζ mediates TJ protein transcription through the activation of the nuclear factor (NF)-κB signaling pathway.

Figure 4. Immunohistochemical staining of bronchial epithelium expressing ZO-1. Brown coloration (indicated by red arrows) represents bronchial epithelium expressing ZO-1. A: Bronchial epithelium expressing ZO-1 with moderate color intensity in C0 group; B: Bronchial epithelium expressing ZO-1 with low color intensity in C1 group; C: Bronchial epithelium expressing ZO-1 with strong color intensity in T group. Red bar: 50 µm.
Conclusion

The current study findings demonstrate that oral supplementation of L. plantarum IS-10506 enhances the expression of airway TJ proteins (claudin-18, occludin, and ZO-1) in bronchial epithelium, indicating its potential in preventing allergic inflammation in the respiratory tract through the concept of the gut-lung axis. Further in-depth studies are necessary to uncover the mechanisms underlying the damage prevention or repair of TJ proteins in the respiratory epithelium.

Acknowledgments

The authors would like to thank Henry Sutanto, MD, PhD for his assistance in writing and editing the manuscript.

Authors Contribution

DF, GS, AE and CRSP were involved in conceiving and planning the research, DF, GS, ISS, AE, AFA, YH, DFH, IKS, BU and CRSP contributed to the methodology, DF, GS and CRSP performed the data acquisition/collection, DF, BU calculated the experimental data and performed the analysis, DF, GS and CRSP aided in interpreting the results, DF and GS drafted the manuscript, DF designed the figures and tables. All authors took parts in giving critical revision of the manuscript.

References

