Microparticles Novel Mechanisms of Intracellular Communication: Implication in Health and Disease

Anna Meiliana, Andi Wijaya

Abstract


BACKGROUND: The prevailing view that eukaryotic cells are restrained from intercellular exchange of genetic information has been challenged by recent reports on nanotubes, exosomes, apoptotic bodies, and nucleic acid—binding peptides that provide novel pathways for cell—cell communication, with implications in health and disease.

CONTENT: Microparticles (MPs) are a heterogeneous population of small plasma membrane structures that serve as important signaling structures between cells. MPs are composed of a phospholipid bilayer that exposes transmembrane proteins and receptors and encloses cytosolic components such as enzymes, transcription factors, and mRNA derived from their parent cells. Growing evidence suggests that MPs regulate inflammation, stimulate coagulation, affect vascular functions and apoptosis, and can also play a role in cell proliferation or differentiation. MPs circulate in the bloodstream, can be detected in the peripheral blood, and may originate from different vascular cell types (eg, platelets, monocytes, endothelial cells, red blood cells, and granulocytes).

SUMMARY: Cells of various types release small membrane vesicles called MP on their activation, as well as during the process of apoptosis. The properties and roles of MP generated in different contexts are diverse and are determined by their parent cell and the pathway of their generation, which affects their content. MP are involved in multiple cellular functions, including immunomodulation, inflammation, coagulation, and intercellular communication. MPs are able to deliver molecular signals in the form of lipids, proteins, nucleic acids, or functional trans-membrane proteins from the parent cell to distantly located targets. From a clinical point of view, MP may serve as biomarkers for disease status and may be found useful for developing novel therapeutic strategies.

KEYWORDS: microparticles, microvesicle, membrane remodeling, Intercellular communication


Full Text:

PDF

References


Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001; 97: 3075-85, CrossRef.

Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science. 2004; 303: 1007-10, CrossRef.

Vidulescu C, Clejan S, O’Connor KC. Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J Cell Mol Med. 2004; 8: 388-96, CrossRef.

Ponsaerts P, Berneman ZN. Modulation of cellular behavior by exogenous messenger RNA. Leukemia. 2006; 20: 767-9, CrossRef.

Haass NK, Herlyn M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Invest Dermatol Symp Proc. 2005; 10: 153-63, CrossRef.

Morel O, Toti F, Hugel B, Freyssinet JM. Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol. 2004; 11: 156-64, CrossRef.

Beaudoin AR, Grondin G. Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena. Bioch Biophys Acta. 1991; 1071: 203-19, CrossRef.

Fevrier B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004; 16: 415-21, CrossRef.

Greenwalt TJ. The how and why of exocytic vesicles. Transfusion. 2006; 46: 143-52, CrossRef.

Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005; 20: 22-7, CrossRef.

Barry OP, FitzGerald GA. Mechanisms of cellular activation by platelet microparticles. Thromb Haemost. 1999; 82: 794-800, PMID.

Barry OP, Pratico D, Savani RC, Fitz-Gerald GA. Modulation of monocyte-endothelial cell interaction by platelet microparticles. J Clin Invest. 1998; 102: 136-44, CrossRef.

Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967; 13: 269-88, CrossRef.

Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol. 1999; 30: 111-42, CrossRef.

VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res. 2003; 59: 277-87, CrossRef.

George JN, Thoi LL, McManus LM, Reimann TA. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982; 60: 834-40, PMID.

Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 2009; 101: 439-51, CrossRef.

Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings. Thromb Res. 2008; 123: 8-23, CrossRef.

Horstman LL, Jy W, Jimenez JJ, Bidot C, Ahn YS. New horizons in the analysis of circulating cell-derived microparticles. Keio J Med. 2004; 53: 210-30, CrossRef.

Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009; 21: 575-81, CrossRef.

Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009; 9: 581-93, CrossRef.

Mause SF, Weber C. Microparticles. Protagonist of a novel communication network for intracellular information exchange. Circ Res. 2010; 107: 1047-57, CrossRef.

Freyssinet JM. Cellular microparticles: what are they bad or good for? J Thromb Haemost. 2003; 1: 1655-62, CrossRef.

Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K. The stem cell continuum: cell cycle, injury, and phenotype lability. Ann NY Acad Sci. 2007; 1106: 20-9, CrossRef.

Quesenberry PJ, Aliotta JM. The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles. Stem Cell Rev. 2008; 4: 137-47, CrossRef.

Camussi G, Deregibs MC, Tetta C. Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens. 2010; 19: 7-12, CrossRef.

Jy W, Horstman LL, Jimenez JJ, Ahn YS, Biró E, Nieuwland R, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost. 2004; 2: 1842-3, CrossRef.

Morel O, Morel N, Hugel B, Jesel L, Vinzio S, Goichot B, et al. The significance of circulating microparticles in physiology, inflammatory and thrombotic diseases. Rev Med Interne. 2005; 26: 791-801, CrossRef.

Zwaal RFA, Comfurius P, Bevers EM. Platelet procoagulant activity and microvesicle formation. Its putative role in hemostasis and thrombosis. Biochim Biophys Acta Mol Basis Dis. 1992; 1180: 1-8, CrossRef.

Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z. Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin Immunopathol. 2005; 27: 375-87, CrossRef.

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996; 183: 1161-72, CrossRef.

Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006; 20: 1487-95, CrossRef.

Holme PA, Orvim U, Hamers MJ, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol. 1997; 17: 646-53, CrossRef.

Vikkula M, Boon LM, Carraway KL III, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell. 1996; 87: 1181-90, CrossRef.

Valadi H, Ekstrom K, Bossios A, Sjortrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs amd microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654-9, CrossRef.

Henseleit U, Plasa G, Haest C. Effects of divalent cations on lipid flip-flop in the human erythrocyte membrane. Biochim Biophys Acta. 1990; 1029: 127-35, CrossRef.

Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost. 2002; 88: 186-93, PMID.

Fox JEB, Austin CD, Boyles JK, Steffen PK. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol. 1990; 111: 483-93, CrossRef.

Fox JE, Austin CD, Reynolds CC, Steffen PK. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem. 1991; 266: 13289-95, PMID.

McLaughlin PJ, Gooch JT, Mannherz HG, Weeds AG. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993; 364: 685-92, CrossRef.

Morel O, Toti F, Hugel B, Freyssinet JM. Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol. 2004; 11: 156-64, CrossRef.

Freyssinet JM, Toti F. Formation of procoagulant microparticles and properties. Thromb Res. 2010; 125 (Suppl 1): S46-8, CrossRef.

Tesse A, Martínez MC, Meziani F, Hugel B, Panaro MA, Mitolo V, et al. Origin and biological significance of shed-membrane microparticles. Endocr Metab Immune Disord Drug Targets. 2006; 6: 287-94, CrossRef.

Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, et al. Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol. 2006; 26: 2594-604, CrossRef.

Lechner D, Weltermann A. Circulating tissue factor-exposing microparticles. Thromb Res. 2008; 122 (Suppl 1): S47-54, CrossRef.

Gross PL, Furie BC, Merrill-Skoloff G, Chou J, Furie B. Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development. J Leukoc Biol. 2005; 78: 1318-26, CrossRef.

Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2007; 27: 1687-93, CrossRef.

Muller I, Klocke A, Alex M, Kotzsch M, Luther T, Morgenstern E, et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J. 2003; 17: 476-8, CrossRef.

Bach R, Rifkin DB. Expression of tissue factor procoagulant activity: regulation by cytosolic calcium. Proc Natl Acad Sci USA. 1990; 87: 6995-9, CrossRef.

Morrissey JH. Tissue factor: an enzyme cofactor and a true receptor. Thromb Haemost. 2001; 86: 66-74, PMID.

Azevedo LC, Pedro MA, Laurindo FR. Circulating microparticles as therapeutic targets in cardiovascular diseases. Recent Pat Cardiovasc Drug Discov. 2007; 2: 41-51, CrossRef.

Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells Mol Dis. 2006; 36: 182-7, CrossRef.

Rand ML, Wang H, Bang KW, Packham MA, Freedman J. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb Haemost. 2006; 4: 1621-3, CrossRef.

Fourcade O, Simon MF, Viode C, Rugani N, Leballe F, Ragab A, et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995; 80: 919-27, CrossRef.

Wu Y, Tibrewal N, Birge RB. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol. 2006; 16: 189-97, CrossRef.

Furie B, Furie BC. Cancer-associated thrombosis. Blood Cells Mol Dis. 2006; 36: 177-81, CrossRef.

Miguet L, Pacaud K, Felden C, Hugel B, Martinez MC, Freyssinet JM, et al. Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics. 2006; 6: 153-71, CrossRef.

Fritzsching B, Schwer B, Kartenbeck J, Pedal A, Horejsi V, Ott M. Release and intercellular transfer of cell surface CD81 via microparticles. J Immunol. 2002; 169: 5531-7, CrossRef.

Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Brański P, et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother. 2006; 55: 808-18, CrossRef.

Perini F, Vidal R, Ghetti B, Tagliavini F, Frangione B, Prelli F. PrP27-30 is a normal soluble prion protein fragment released by human platelets. Biochem Biophys Res Commun. 1996; 223: 572-7, CrossRef.

Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A. Cellular prion protein is released on exosomes from activated platelets. Blood. 2006; 107: 3907-11, CrossRef.

Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal plateletfree plasma. Br J Haematol. 1971; 21: 53-69, CrossRef.

Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost. 2007; 97: 425-34, CrossRef.

Tans G, Rosing J, Thomassen MCLGD, Heeb MJ, Zwaal RF, Griffin JH. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood. 1991; 77: 2641-8, PMID.

Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli E, et al. Megakaryocyte-derived microparticles: Direct visualization and distinction from platelet-derived microparticles. Blood. 2008; 113: 1112-21, CrossRef.

Cramer EM, Norol F, Guichard J, Breton-Gorius J, Vainchenker W, Massé JM, et al. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood.1997; 89: 2336-46, PMID.

Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, et al. Platelet-and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS. 2003; 17: 33-42, CrossRef.

Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999; 94: 3791-9, PMID.

Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood. 1996; 88: 3456-64, PMID.

Reininger AJ, Heijnen HF, Schumann H, Specht HM, Schramm W, Ruggeri ZM. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood. 2006; 107: 3537-45, CrossRef.

Mackman N. On the trail of microparticles. Circ Res. 2009; 104: 925-7, CrossRef.

Simoncini S, Njock MS, Robert S, Camoin-Jau L, Sampol J, Harle JR, et al. TRAIL/Apo2L Mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro a potential mechanism linking Inflammation and coagulation. Circ Res. 2009; 104: 943-51, CrossRef.

Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A. Endothelial microparticles in diseases. Cell Tissue Res. 2009; 335: 143-51, CrossRef.

Leroyer AS, Ebrahimian TG, Cochain C, Recalde A, Blanc- Brude O, Mees B, et al. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation. 2009; 119: 2808-17, CrossRef.

Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol. 2011; 31: 27-33, CrossRef.

Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood. 2004; 104: 2761-6, CrossRef.

Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA. 2001; 98: 6407-11, CrossRef.

Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007; 110: 2440-8, CrossRef.

Szotowski B, Antoniak S, Goldin-Lang P, Tran QV, Pels K, Rosenthal P, et al. Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation-and cytokine-induced endothelial cells. Cardiovasc Res. 2007; 73: 806-12, CrossRef.

Brodsky SV, Malinowski K, Golightly M, Jesty J, Goligorsky MS. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential. Circulation. 2002; 106: 2372-8, CrossRef.

Sapet C, Simoncini S, Loriod B, Puthier D, Sampol J, Nguyen C, et al. Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood. 2006; 108: 1868-76, CrossRef.

Simak J, Holada K, Vostal JG. Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biol. 2002; 3: 11, CrossRef.

Wang JM, Wang Y, Huang JY, Yang Z, Chen L, Wang LC, et al. C-Reactive proteininduced endothelial microparticle generation in HUVECs is related to BH4-dependent NO formation. J Vasc Res. 2007; 44: 241-8, CrossRef.

Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost. 2006; 4: 566-73, CrossRef.

Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, Tanaka T, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol. 2005; 45: 1622-30, CrossRef.

Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol. 2005; 16: 3381-8, CrossRef.

Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2006; 26: 112-6, CrossRef.

Esposito K, Ciotola Ml, Schisano B, Gualdiero R, Sardelli L, Misso L, et al. Endothelial microparticles correlate with endothelial dysfunction in obese women. J Clin Endocrinol Metab. 2006; 91: 3676-9, CrossRef.

Heiss C, Amabile N, Lee AC, Real WM, Schick SF, Lao D, et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol. 2008; 51: 1760-71, CrossRef.

Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 2004; 125: 804-13, CrossRef.

Amabile N, Heiss C, Chang V, Angeli FS, Damon L, Rame EJ, et al. Increased CD62e(+) endothelial microparticle levels predict poor outcome in pulmonary hypertension patients. J Heart Lung Transplant. 2009; 28: 1081-6, CrossRef.

Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K, Matsuzawa Y, et al. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol. 2009; 54: 601-8, CrossRef.

Amabile N, Boulanger CM, Guerin A, Tedgui A, London G. Circulating endothelial microparticles: a novel biomarker for cardiovascular death and cardiovascular events in end-stage-renal disease. Circulation. 2009; 120: S1010, article.

Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Mol Med. 2009; 13: 454-71, CrossRef.

Pirro M, Schillaci G, Paltriccia R, Bagaglia F, Menecali C, Mannarino MR, et al. Increased ratio of CD31+/CD42- microparticles to endothelial progenitors as a novel marker of atherosclerosis in hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2006; 26: 2530-5, CrossRef.

Abid Hussein MN, Boing AN, Sturk A, Hau CM, Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost. 2007; 98: 1096-107, CrossRef.

Perez-Casal M, Downey C, Cutillas-Moreno B, Zuzel M, Fukudome K, Toh CH. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica. 2009; 94: 387-94, CrossRef.

Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, et al. Comparative proteomic analysis of PAI-1 and TNF--derived endothelial microparticles. Proteomics. 2008; 8: 2430-46, CrossRef.

Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol. 2003; 13: 159-67, CrossRef.

Shai E, Varon D. Development, cell differentiation, angiogenesis-microparticles and their roles in angiogenesis. Arterioscler Thromb Vasc Biol. 2011; 31: 10-4, CrossRef.

Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res. 2004; 63: 226-35, CrossRef.

Rhee JS, Black M, Schubert U, Fischer S, Morgenstern E, Hammes HP, et al. The functional role of blood platelet components in angiogenesis. Thromb Haemost. 2004; 92: 394-402, CrossRef.

Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005; 67: 30-8, CrossRef.

Leroyer AS, Rautou PE, Silvestre JS, Castier Y, Lesèche G, Devue C, et al. CD40 Ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis. J Am Coll Cardiol. 2008; 52: 1302-11, CrossRef.

Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest. 2004; 34: 392-401, CrossRef.

Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension. 2006; 48:180-6, CrossRef.

Van der Zee PM, Biro´ E, Ko Y, de Winter RJ, Hack CE, Sturk A, et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem. 2006; 52: 657-64, CrossRef.

Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003; 145: 962-70, CrossRef.

Bernal-Mizrachi L, Jy W, Fierro C, Macdonough R, Velazques HA, Purowet J, et al. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int J Cardiol. 2004; 97: 439-46, CrossRef.

Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation. 1999; 99: 348-53, CrossRef.

Bonderman D, Teml A, Jakowitsch J, Adlbrecht C, Gyöngyösi M, Sperker W, et al. Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood. 2002; 99: 2794-800, CrossRef.

Toschi V, Gallo R, Lettino M, Fallon JT, Gertz SD, Fernandez-Ortiz A, et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation. 1997; 95: 594-9, CrossRef.

Taraboletti G, D’Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V. Shedding of the matrix metalloproteinases matrixmetalloproteinase (MMP)-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol. 2002; 160: 673-80, CrossRef.

Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005; 25: 2054-61, CrossRef.

Sims PJ, Wiedmer T. Induction of cellular procoagulant activity by the membrane attack complex of complement. Semin Cell Biol. 1995; 6: 275-82, CrossRef.

Philippova M, Suter Y, Toggweiler S, Schoenenberger AW, Joshi MB, Kyriakakis E, et al. T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis. Eur Heart J. 2010; 32: 760-1, CrossRef.

Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol. 2004; 286: H1910-5, CrossRef.

VanWijk MJ, Svedas E, Boer K, Nieuwland R, VanBavel E, Kublickiene KR. Isolated microparticles, but not whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial arteries from healthy pregnant women. Am J Obstet Gynaecol. 2002; 187: 1686-93, CrossRef.

Mostefai HA, Agouni A, Carusio N, Mastronardi ML, Heymes C, Henrion D, et al. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J Immunol. 2008; 180: 5028-35, CrossRef.

Tushuizen ME, Diamant M, Sturk A, Nieuwland R. Cell-derived microparticles in the pathogenesis of cardiovascular disease. Friend or foe? Arterioscler Thromb Vasc Biol. 2011; 31: 4-9, CrossRef.

Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003; 41: 211-7, CrossRef.

Pirro M, Schillaci G, Bagaglia F, Menecali C, Paltriccia R, Mannarino MR, et al. Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk. Atherosclerosis. 2008; 197: 757-67, CrossRef.

Mallat Z, Steg PG, Hugel B, et al. Prognostic value of circulating shed membrane pro-coagulant microparticles in patients with severe acute coronary syndromes. A sub-study from the global registry of acute coronary events (GRACE). Circulation. 2004; 110 (Suppl S): 575.

Chironi G, Hugel B, Bihorel Y, et al. Leukocyte-derived microparticles as an independent marker of preclinical carotid atherosclerosis. Circulation. 2005; 112: U126.

Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010; 123: 1603-11, CrossRef.

van Doormaal, FF, Kleinjan A, Di Nisio M, Buller HR, Nieuwland R. Cell-derived microvesicles and cancer. Neth J Med. 2009; 67: 266-73, PMID.

Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, et al. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008; 15: 80-8, CrossRef.

Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008; 10: 1470-6, CrossRef.

Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005; 106: 1604-11, CrossRef.

Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, et al. Transfer of the chemokine receptor CCR5 between cells by membranederived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med. 2000; 6: 769-75, CrossRef.

Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008; 10: 619-24, CrossRef.

Sanderson MP, Keller S, Alonso A, Riedle S, Dempsey PJ, Altevogt P. Generation of novel, secreted epidermal growth factor receptor (EGFR/ErbB1) isoforms via metalloprotease-dependent ectodomain shedding and exosome secretion. J Cell Biochem. 2008; 103: 1783-97, CrossRef.

Wysoczynski M, Ratajczak MZ. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer. 2009; 125: 1595-603, CrossRef.

Zwicker JI, Furie BC, Furie B. Cancer-associated thrombosis. Crit Rev Oncol Hematol. 2007; 62: 126-36, CrossRef.

Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009; 15: 6830-40, CrossRef.

Milsom C, Yu J, May L, Meehan B, Magnus N, Al-Nedawi K, et al. The role of tumor and host-related tissue factor pools in oncogene-driven tumor progression. Thromb Res. 2007; 120: S82-91, CrossRef.

Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost. 2007; 5: 520-7, CrossRef.

Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 2006; 20: 2673-86, CrossRef.

Angelucci A, D’Ascenzo S, Festuccia C, Gravina GL, Bologna M, Dolo V, et al. Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines. Clin Exp Metastasis. 2000; 18: 163-70, CrossRef.

Ginestra A, La Placa MD, Saladino F, Cassara D, Nagase H, Vittorelli ML. The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res. 1998; 18: 3433-7, PMID.

Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Brański P, et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother. 2006; 55: 808-18, CrossRef.

Hakulinen J, Sankkila L. Sugiyama N, Lehti K, Keski-Oja J. Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J Cell Biochem. 2008; 105: 1211-8, CrossRef.

Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 2003; 63: 4331-7, PMID.

Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 2005; 4: 1595-604, CrossRef.

Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. The sixth report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC VI). The sixth report of The Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med. 1997; 157: 2413-44, CrossRef.

WHO. 1999 World Health Organization. International Society of Hypertension, Guidelines for the Management of Hypertension: guidelines subcommittee. J Hypertens. 1999; 17: 151-83, CrossRef.

Kaplan N. Hypertensive crises. In: Kaplan N. Kaplan’s Clinical Hypertension. 7th ed. Baltimore: Williams and Wilkins; 1998. p.265-80, NLMID.

Veterans Administration Cooperative Study Group on Antihypertensive Agents. Effects of treatment on morbidity in hypertension: results in patients with diastolic blood pressure averaging 115–129 mm Hg. JAMA. 1967; 202: 1028-1034, CrossRef.

Preston RA, Baltodano NM, Cienki J, Materson BJ. Clinical presentation and management of patients with uncontrolled, severe hypertension: results from a public teaching hospital. J Hum Hypertens. 1999; 13: 249-55, CrossRef.

Preston RA, Materson BJ, Yoham MA, Anapol H. Hypertension in Haitians: pilot survey of a public teaching hospital multispecialty clinic. J Hum Hypertens. 1996; 10: 743-5, PMID.

Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999; 340: 115-26, CrossRef.

Lip GY, Blann AD. Does hypertension confer a prothrombotic state? Virchow’s triad revisited. Circulation. 2000; 101: 218-20, CrossRef.

Lip GYH, Blann AD, Beevers DG. Prothrombotic factors, endothelial function and left ventricular hypertrophy in isolated systolic hypertension compared with systolicdiastolic hypertension. J Hypertens. 1999; 17: 1203-7, CrossRef.

Ferri C, Bellini C, Desideri G, Giuliani E, De Siati L, Cicogna S, et al. Clustering of endothelial markers of vascular damage in human saltsensitive hypertension: influence of dietary sodium load and depletion. Hypertension. 1998; 32: 862-8, CrossRef.

Ferri C, Desideri G, Valenti M, Bellini C, Pasin M, Santucci A, et al. Early upregulation of endothelial adhesion molecules in obese hypertensive men. Hypertension. 1999; 34: 568-73, CrossRef.

Lip GYH, Edmunds E, Hee FLLS, Blann AD, Beevers DG. A crosssectional, diurnal, and follow-up study of platelet activation and endothelial dysfunction in malignant phase hypertension. Am J Hypertens. 2001; 14: 823-8, CrossRef.

John S, Schmieder RE. Impaired endothelial function in arterial hypertension and hypercholesterolemia: potential mechanisms and differences J Hypertens. 2000; 18: 363-74, CrossRef.

Park JB, Charbonneauc F, Schiffrin EL. Correlation of endothelial function in large and small arteries in human essential hypertension. J Hypertens. 2001; 19: 415-20, CrossRef.

Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Piccoli A, Valentini U, et al. Endothelial dysfunction in small resistance arteries of patients with non–insulindependent diabetes mellitus. J Hypertens. 2001; 19: 913-9, CrossRef.

Vanhoutte PM. How to assess endothelial function in human blood vessels. J Hypertens. 1999; 17: 1047-58, CrossRef.

Camilletti A, Moretti N, Giacchetti G, Faloia E, Martarelli D, Mantero F, et al. Decreased nitric oxide levels and increased calcium content in platelets of hypertensive patients. Am J Hypertens. 2001; 14: 382-6, CrossRef.

Blann AD, Lip GY, Islim IF, Beevers DG. Evidence of platelet activation in hypertension. J Hum Hypertens. 1997;11: 607-9, CrossRef.

Riondino S, Pignatelli P, Pulcinelli FM, Lenti L, Veroli CD, Marigliano V, et al. Platelet hyperactivity in hypertensive older patients is controlled by lowering blood pressure. J Am Geriatr Soc. 1999; 47: 943-7, CrossRef.

Verhaar MC, Beutler JJ, Gaillard CA, Koomans HA, Fijnheer R, Rabelink TJ. Progressive vascular damage in hypertension is associated with increased levels of circulating P-selectin. J Hypertens. 1998; 16: 45-50, CrossRef.

Tomoda F, Takata M, Kagitani S, et al. Different platelet aggregability during mental stress in two stages of essential hypertension. Am J Hypertens. 1999; 12: 1063-70, CrossRef.

Dockrell ME, Walker BR, Noon JP, Watt GC, Williams BC, Webb DJ. Platelet aggregation in young men with contrasting predisposition to high blood pressure. Am J Hypertens. 1999; 12: 115-9, CrossRef.

Davi G, Gresele P, Violi F, Basili S, Catalano M, Giammarresi C, et al. Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation. 1997; 96: 69-75, CrossRef.

Cadwgan TM, Benjamin N. Evidence for altered platelet nitric oxide synthesis in essential hypertension. J Hypertens. 1993; 11: 417-20, CrossRef.

Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest. 1999; 104: 93-102,CrossRef.

Jimenez JJ, Jy W, Mauro LM, Horstman LL, Ahn YS. Elevated endothelial microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal microvascular cell culture and patients with active disease. Br J Haematol. 2001; 112: 81-90, CrossRef.

Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation. 2000; 101: 841-3, CrossRef.

Larkin M. Raised endothelial microparticles an early marker for multiple sclerosis? Lancet. 2001; 357: 1679, CrossRef.

Minagar A, Jy W, Jimenez JJ, Sheremata WA, Mauro LM, Mao WW, et al. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001; 56: 1319-24, CrossRef.

Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001; 104: 2649-52, CrossRef.

Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Crit Rev Oncol/Hematol. 1999; 30: 111-42, CrossRef.

Tocchetti EV, Flower RL, Lloyd JV. Assessment of in vitro-generated platelet microparticles using a modified flow cytometric strategy. Thromb Res. 2001; 103: 47-55, CrossRef.

Nomura S, Nakamura T, Cone J, Tandon NN, Kambayashi J. Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation. Cytometry. 2000; 40: 173-81, CrossRef.

Lee YJ, Jy W, Horstman LL, Janania J, Reyes Y, Kelley RE, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res. 1993; 72: 295-304, CrossRef.

Geiser T, Sturzenegger M, Genewein U, Haeberli A, Beer JH. Mechanisms of cerebrovascular events as assessed by procoagulant activity, cerebral microemboli, and platelet microparticles in patients with prosthetic heart valves. Stroke. 1998; 29: 1770-7, CrossRef.

Katopodis JN, Kolodny L, Jy W, Janania J, Reyes Y, Kelley RE, et al. Platelet microparticles and calcium homeostasis in acute coronary ischemias. Am J Hematol. 1997; 54: 95-101, CrossRef.

Jy W, Horstman LL, Arce M, Ahn YS. Clinical significance of platelet microparticles in autoimmune thrombocytopenias. J Lab Clin Med. 1992; 119: 334-45, CrossRef.

Bakouboula B, Morel O, Faure A, Zobairi F, Jesel L, Trinh A, et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Crit Care Med. 2008; 177: 536-43, CrossRef.

Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham Study. Circulation. 1979; 59: 8-13, CrossRef.

Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors and 12-year cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993; 16: 434-44, CrossRef.

Omoto S, Nomura S, Shouzu A, Hayakawa T, Shimizu H, Miyake Y, et al. Significance of platelet-derived microparticles and activated platelets in diabetic nephropathy. Nephron. 1999; 81: 271-7, CrossRef.

Diamant M, Nieuwland R, Pablo RF, Sturk A, Smit JW, Radder JK. Elevated numbers of tissue – Factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation. 2001; 106: 2442-7, CrossRef.

Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut J-G, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes. 2002; 51: 2840-5, CrossRef.

Wollert KC, Drexler H. Mesenchymal stem cells for myocardial infarction: promises and pitfalls. Circulation. 2005; 112: 151-3, CrossRef.

Fiegel HC, Lange C, Kneser U, Lambrecht W, Zander AR, Rogiers X, et al. Fetal and adult liver stem cells for liver regeneration and tissue engineering. J Cell Mol Med. 2006; 10: 577-87, CrossRef.

Cantley LG. Adult stem cells in the repair of the injured renal tubule. Nat Clin Pract Nephrol. 2005; 1: 22-32, CrossRef.

Levine SJ. Mechanisms of soluble cytokine receptor generation. J Immunol. 2004; 173: 5343-8, CrossRef.

Lucas WJ, Yoo BC, Kragler F. RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol. 2001; 2: 849-57, CrossRef.

Albi E, Viola Magni MP. The role of intranuclear lipids. Biol Cell. 2004; 96: 657-67, CrossRef.

Taback B, Hoon DS. Circulating nucleic acids and proteomics of plasma/serum: clinical utility. Ann N Y Acad Sci. 2004; 1022: 1-8, CrossRef.

Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, et al. Platelet-derived microparticles bind to hematopoietic progenitor cells and enhance their engraftment. Blood. 2001; 98: 3143-9, CrossRef.

Christian JL. Argosomes: intracellular transport vehicles for intercellular signals? Sci STKE. 2002; 2002: PE13, CrossRef.

Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20: 847-56, CrossRef.

Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer of MicroRNAs by embryonic stem cell microvesicles. Plos One. 2009; 4: e4722, CrossRef.

Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009; 20: 1053-67, CrossRef.

Kostin S, Popescu LM. A distinct type of cell in myocardium: interstitial Cajal-like cells. J Cell Mol Med. 2009; 13: 295-308, CrossRef.

Hinescu ME, Popescu LM. Interstitial Cajal-like cells (ICLC) in human atrial myocardium. J Cell Mol Med. 2005; 9: 972-5, CrossRef.

Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med. 2010; 14: 1605-18, CrossRef.




DOI: https://doi.org/10.18585/inabj.v3i1.131

Copyright (c) 2011 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                   

 

 

The Prodia Education and Research Institute