Novel Biomarkers in Cardiovascular Disease: A Review
Abstract
BACKGROUND: The investigation of novel circulating serum and plasma biomarkers in patients with cardiovascular disease has been accelerating at a remarkable pace. New markers or tests are often presented too early to the medical profession, potentially leading to overuse and, thus, extra burden and costs to patients, the healthcare industry, and the economy. The challenge for clinicians and medical researchers is how to optimally apply existing and new markers/tests.
CONTENT: Biomarkers are biological parameters that can be objectively measured and quantified as indicators of normal biologic processes, pathogenic processes, or responses to a therapeutic intervention. Typically thought of as disease process screening, diagnosing, or monitoring tools, biomarkers may also be used to determine disease susceptibility and eligibility for specific therapies. Cardiac biomarkers are protein components of cell structures that are released into circulation when myocardial injury occurs. They play a pivotal role in the diagnosis, risk stratification, and treatment of patients with chest pain and suspected acute coronary syndrome (ACS) as well as those with acute exacerbations of heart failure.
SUMMARY: Active investigation has brought forward an increasingly large number of novel candidate markers but few have withstood the test of time and become integrated into contemporary clinical care because of their readily apparent diagnostic, prognostic, and/or therapeutic utility. With regard to the more novel biomarkers, careful thought is needed with regard to the appropriate target populations for discovery and validation, as well as the criteria used to sort out the contenders from the pretenders.
KEYWORDS: biomarker, cardiovascular disease, atherosclerosis, acute myocardial infarction, heart failure, risk stratification, diagnosis, prognosis
Full Text:
PDFReferences
American Heart Association. Heart Disease and Stroke Statistics: 2005 Update. Dallas, Tex: American Heart Association; 2005, article.
Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. Circulation. 2002; 106: 388-91, CrossRef.
Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults: the Bogalusa Heart Study. N Engl J Med. 1998; 338: 1650-6, CrossRef.
Raitakari OT, Juonala M, Kahonen M, Taittonen L, Laitinen T, Mäki-Torkko N, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003; 290: 2277-83, CrossRef.
Kuller LH, Shemanski L, Psaty BM, Borhani NO, Gardin J, Haan MN, et al. Subclinical disease as an independent risk factor for cardiovascular disease. Circulation. 1995; 92: 720-6, CrossRef.
Psaty BM, Furberg CD, Kuller LH, Bild DE, Rautaharju PM, Polak JF, et al. Traditional risk factors and subclinical disease measures as predictors of first myocardial infarction in older adults: the Cardiovascular Health Study. Arch Intern Med. 1999; 159: 1339-47, CrossRef.
Guidry UC, Evans JC, Larson MG, Wilson PWF, Murabito JM, Levy D. Temporal trends in event rates after Q-wave myocardial infarction: the Framingham Heart Study. Circulation. 1999; 100: 2054-9, CrossRef.
Jokhadar M, Jacobsen SJ, Reeder GS, Weston SA, Roger VL. Sudden death and recurrent ischemic events after myocardial infarction in the community. Am J Epidemiol. 2004; 159: 1040-6, CrossRef.
Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003; 108: 1664-72, CrossRef.
Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003; 108: 1772-8, CrossRef.
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001; 69: 89-95, CrossRef.
Fox N, Growdon JH. Biomarkers and surrogates. Neuro Rx. 2004; 1: 181, CrossRef.
Morrow DA, de Lemos JA. Benchmark for the assessment of novel cardiovascular biomarkers. Circulation. 2007; 115: 949-52, CrossRef.
Moons KGM. Criteria for scientific evaluation of novel markers: a perspective. Clin Chem. 2010; 56: 537-41, CrossRef.
Tardif JC, Heinonen T, Orloff D, Libby P. Vascular biomarkers and surrogates in cardiovascular disease. Circulation. 2006; 113: 2936-42, CrossRef.
Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med. 1989; 8: 431-40, CrossRef.
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. International human genome sequencing consortium. Initial sequencing and analysis of the human genome. Nature. 2001; 409: 860-921, PMID.
Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P. A haplotype map of the human genome. Nature. 2005; 437: 1299-320, CrossRef.
Marko-Varga G, Lindberg H, Lofdahl CG, Jonsson P, Hansson L, Dahlback M, et al. Discovery of biomarker candidates within disease by protein profiling: principles and concepts. J Proteome Res. 2005; 4: 1200-12, CrossRef.
Westont AD, Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res. 2004; 3: 179-96, CrossRef.
Vasan RS. Biomarkers of cardiovascular disease: Molecular basis and practical considerations. Circulation. 2006, 113: 2335-62, CrossRef.
Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994; 265: 2037-48, CrossRef.
Napoli C, Lerman LO, Sica V, Lerman A, Tajana G, de Nigris F. Microarray analysis: a novel research tool for cardiovascular scientists and physicians. Heart. 2003; 89: 597-604, CrossRef.
Cook SA, Rosenzweig A. DNA microarrays: implications for cardiovascular medicine. Circ Res. 2002; 91: 559-64, CrossRef.
Steinmetz LM, Davis RW. Maximizing the potential of functional genomics. Nat Rev Genet. 2004; 5: 190-201, CrossRef.
Gerszten RE, Carr SA, Sabatine M. Integration of proteomic-based tools for improved biomarkers of myocardial injury. Clin Chem. 2010; 56: 194-201, CrossRef.
Bartunek J. Biomarkers for coronary artery disease: mission impossible? Biomarkers Med. 2010; 4: 339-40, CrossRef.
Liu MY, Xydakis AM, Hoogeveen RC, Jones PH, Smith EO, Nelson KW, et al. Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 system. Clin Chem. 2005; 51: 1102-9, CrossRef.
National Committee for Clinical Laboratory Standards (NCCLS). Evaluation of precision performance of clinical chemistry devices; approved guideline. Wayne, PA: NCCLS; 1999.
National Committee for Clinical Laboratory Standards (NCCLS). Evaluation of the linearity of quantitative measurement procedures: a statistical approach; approved guideline. Wayne, PA: NCCLS; 2003.
National Committee for Clinical Laboratory Standards (NCCLS). Interference testing in clinical chemistry; Approved guideline. Wyane, PA: NCCLS; 2002.
(ISO) ISO Standard. Accuracy (trueness and precision) of measurement methods and results (ISO 5725)-Part 1: general principles and definitions. Geneva: ISO; 1994. Available from: http://www.iso.org/.
Solberg HE. International Federation of Clinical Chemistry (IFCC), Scientific Committee, Clinical Section, Expert Panel on Theory of Reference Values, and International Committee for Standardization in Haematology (ICSH), Standing Committee on Reference Values. Approved Recommendation. (1986) on the theory of reference values. Part 1. The concept of reference values. J Clin Chem Clin Biochem. 1987; 25: 337-42, PMID.
Solberg HE, PetitClerc C. International Federation of Clinical Chemistry (IFCC), Scientific Committee, Clinical Section, Expert Panel on Theory of Reference Values. Approved recommendation. (1988) on the theory of reference values. Part 3. Preparation of individuals and collection of specimens for the production of reference values. J Clin Chem Clin Biochem. 1988; 26: 593-8, PMID.
Vitzthum F, Behrens F, Anderson NL, Shaw JH. Proteomics: from basic research to diagnostic application: a review of requirements and needs. J Proteome Res. 2005; 4: 1086-97, CrossRef.
Bell KJ, Irwig L, Craig JC, Macaskill P. Use of randomised trials to decide when to monitor response to new treatment. BMJ. 2008; 336: 361-5, CrossRef.
Lassere MN, Johnson KR, Boers M, Tugwell P, Brooks P, Simon L, et al. Definitions and validation criteria for biomarkers and surrogate endpoints: development and testing of a quantitative hierarchical levels of evidence schema. J Rheumatol. 2007; 34: 607-15, PMID.
Barker PE. Cancer biomarker validation: standards and process: roles for the National Institute of Standards and Technology (NIST). Ann NY Acad Sci. 2003; 983: 142-50, CrossRef.
Schulte PA, Perera FP. Validation. In: Schulte PA, Perera FP, editors. Molecular Epidemiology: Principles and Practice. San Diego: Academic Press; 1993. p.79-107, CrossRef.
Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001; 93: 1054-61, CrossRef.
World Health Organization [Internet]. Geneva: WHO; 2009. Cardio Vascular Diseases (CVDs): Fact sheet No. 317 [updated 2009 Sep; cited 2010 Jan]. Available from: http://www.who.int.
Dzau VJ. Markers of malign across the cardiovascular continuum: interpretation and application. Circulation. 2004; 109 (Suppl 1): IV1-2, CrossRef.
Valentin E. Aterovax. Biomarkers Med. 2010; 4: 345-50, CrossRef.
Evans A, Salomaa V, Kulathinal S, Asplund K, Cambien F, Ferrario M, et al. MORGAM (an international pooling of cardiovascular cohorts). Int J Epidemiol. 2005; 34: 21-7, CrossRef.
Kulathinal S, Niemela M, Kuulasmaa K, contributors from Participating Centres, for the MORGAM Project. Description of MORGAM cohorts [updated 2005]. Available at: http://www.thl.fi/.
Blankenberg S, Zeller T, Saarela O, Havulinna AS, Kee F, Tunstall-Pedoe H, et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts. The MONICA, risk, genetic, archiving, and monograph (MORGAM) biomarker project. Circulation. 2010; 121: 2388-97, CrossRef.
Castelli WP, Anderson K, Wilson PW, Levy D. Lipids and risk of coronary heart disease. The Framingham Study. Ann Epidemiol. 1992; 2: 23-8, CrossRef.
Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996; 335: 1001-9, CrossRef.
Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998; 279: 1615-22, CrossRef.
Brewer HB Jr, Remaley AT, Neufeld EB, Basso F, Joyce C. Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol. 2004; 24: 1755-60, CrossRef.
Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ. 2009; 338: b92, CrossRef.
Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007; 356: 1304-16, CrossRef.
Ansell BJ, Fonarow GC, Fogelman AM. The paradox of dysfunctional high-density lipoprotein. Curr Opin Lipidol. 2007 ;18: 427-34, CrossRef.
Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006; 116: 3090-100, CrossRef.
Remaley AT, Warnick GR. High-density lipoprotein: what is the best way to measure its antiatherogenic potential? Expert Opin Med Diagn. 2008; 2: 773-88, CrossRef.
Sethi AA, Sampson M, Warnick R, Muniz N, Vaisman B, Nordestgaard BG, et al. High Pre-β1 HDL Concentration and low lecithin: Cholesterol acyltransferase activities are strong positive risk markers for ischemic heart disease and independent of HDL-cholesterol. Clin Chem. 2010; 56: 1128-37, CrossRef.
Brown J, Nallamshetty S, Plutzky J. Intersecting vectors of basic science research and clinical medicine: LOX-1? Clin Chem. 2010; 56: 499-01, CrossRef.
Inoue N, Okamura T, Kokubo Y, Fujita Y, Sato Y, Nakanishi M, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010; 56: 550-8, CrossRef.
Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, White IR, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009; 302: 412-23, CrossRef.
Kamstrup PR, Nordestgaard BG. Lipoprotein(a) should be taken much more seriously. Biomarkers Med. 2009; 3: 439-41, CrossRef.
Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A2. Ann Rev Biochem. 2008; 77: 495-520, CrossRef.
Rosenson RS, Hislop C, McConnell D, Elliott M, Stasiv Y, Wang N, et al. Effects of 1-H-indole-3-glyoxamide (A-002) on concentration of secretory phospholipase A2 (PLASMA study): a Phase II double-blind, randomised, placebo-controlled trial. Lancet. 2009; 373: 649-58, CrossRef.
Knockaert DC, Buntinx F, Stoens N, Bruyninckx R, Delooz H. Chest pain in the emergency department: the broad spectrum of causes. Eur J Emerg Med 2002; 9: 25-30, CrossRef.
Karmen A, Wroblewski F, Ladue JS. Transaminase activity in human blood. J Clin Invest. 1955; 34: 126-31, CrossRef.
Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Pracice Guidelines. Circulation. 2007; 116: e148-304, CrossRef.
Ross R. Atherosclerosis: An inflammatory disease. N Engl J Med. 1999; 340: 115-26, CrossRef.
Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res. 1999; 85: 753-66, CrossRef.
Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008; 54: 24-38, CrossRef.
Uno K, Nicholls SJ. Biomarkers of inflammation and oxidative stress in atherosclerosis. Biomarkers Med. 2010; 4: 361-73, CrossRef.
Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991; 88: 1785-92, CrossRef.
Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad USA. 1979; 76: 333-7, CrossRef.
Rizvi AA. Cytokine biomarkers, endothelial inflammation, and atherosclerosis in the metabolic syndrome: emerging concepts. Am J Med Sci. 2009; 338: 310-8, CrossRef.
Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelial dysfunction during aging: role of NF kB. J Appl Physiol. 2008; 105: 1333-41, CrossRef.
Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Rosenfeld ME, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994; 89: 2462-78, CrossRef.
Hazen SL, Heinecke JW. 3-chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997; 99: 2075-81, CrossRef.
Schindhelm RK, van der Zwan LP, Teerlink T, Scheffer PG. Myeloperoxidase: A useful biomarker for cardiovascular disease risk stratification? Clin Chem. 209; 55: 1462-70, CrossRef.
Lin HS, Jenner AM, Ong CN, Huang SH, Whiteman M, Halliwell B. A high-throughput and sensitive methodology for the quantification of urinary 8-hydroxy-2´ deoxyguanosine: measurement with gas chromatography-mass spectrometry after single solid-phase extraction. Biochem J. 2004; 380: 541-8, CrossRef.
Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol. 2005; 25: 279-86, CrossRef.
Stephens JW, Khanolkar MP, Bain SC. The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis. 2009; 202: 321-9, CrossRef.
Tsukahara H. Biomarkers for oxidative stress: clinical application in pediatric medicine. Curr Med Chem. 2007; 14: 339-51, CrossRef.
Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res. 2001; 93: 1029-33, CrossRef.
Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2001; 21: 473-80, CrossRef.
Dhamrait SS, Stephens JW, Cooper JA, Acharya J, Mani AR, Moore K, et al. Cardiovascular risk in healthy men and markers of oxidative stress in diabetic men are associated with common variation in the gene for uncoupling protein 2. Eur Heart J. 2004; 25: 468-75, CrossRef.
Boger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation. 1998; 98: 1842-7, CrossRef.
Boger RH. Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Ann Med. 2006: 38: 126-36, CrossRef.
Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004; 350: 1387-97, CrossRef.
Boekholdt SM, Hack CE, Sandhu MS, Luben R, Bingham SA, Wareham NJ, et al. C-reactive protein levels and coronary artery disease incidence and mortality in apparently healthy men and women: the EPIC-Norfolk prospective population study 1993-2003. Atherosclerosis. 2006; 187: 415-22, CrossRef.
Meuwese MC, Stroes ES, Hazen SL, van Miert JN, Kuivenhoven JA, Schaub RG, et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk prospective population study. J Am Coll Cardiol. 2007; 50: 159-65, CrossRef.
Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Chambless LE, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the atherosclerosis risk in communities (ARIC) study. Arch Intern Med. 2005; 165: 2479-84, CrossRef.
Danesh J, Kaptoge S, Mann AG, Sarwar N, Wood A, Angleman SB, et al. Long-term interleukin 6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med. 2008; 5: e78, CrossRef.
Montero I, Orbe J, Varo N, Beloqui O, Monreal JI, Rodríguez JA, et al. C-reactive protein induces matrix metalloproteinase 1 and 10 in human endothelial cells: implications for clinical and subclinical atherosclerosis. J Am Coll Cardiol. 2006; 47: 1369-78, CrossRef.
Venugopal SK, Devaraj S, Jialal I. Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens. 2005; 14: 33-7, CrossRef.
Scirica BM, Morrow DA. Is C-reactive protein an innocent bystander or proatherogenic culprit? The verdict is still out. Circulation. 2006; 113: 2128-34, CrossRef.
Verma S, Devaraj S, Jialal I. Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation. 2006; 113: 2135-50, PMID.
Lee H, Shi W, Tontonoz P, Wang S, Subbanagounder G, Hedrick CC, et al. Role for peroxisome proliferator-activated receptor a in oxidized phospholipid-induced synthesis of monocyte chemotactic protein 1 and interleukin 8 by endothelial cells. Circ Res. 2000; 87: 516-21, CrossRef.
Zhang R, Brennan Ml, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001; 286: 2136-42, CrossRef.
Podrez EA, Schmitt D, Hoff HF, Hazen SL. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest. 1999; 103: 1547-60, CrossRef.
Hazen SL, Zhang R, Shen, Wu W, Podrez EA, MacPherson JC, Z et al. Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation in vivo. Circ Res 1999; 85: 950-8, CrossRef.
Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, et al. Apolipoprotein A 1 is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004; 114: 529-41, CrossRef.
Caslake MJ, Packard CJ. Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase) and cardiovascular disease. Curr Opin Lipidol. 2003; 14: 347-52, CrossRef.
Hase M, Tanaka M, Yokota M, Yamada Y. Reduction in the extent of atherosclerosis in apolipoprotein E-deficient mice induced by electroporation-mediated transfer of the human plasma platelet-activating factor acetylhydrolase gene into skeletal muscle. Prostaglandins Other Lipid Mediat. 2002; 70: 107-18, CrossRef.
Garza CA, Montori VM, Mcconnell JP, Somers VK, Kullo IJ, Lopez-Jimenez F. Association between lipoprotein-associated phospholipase A2 and cardiovascular disease: a systematic review. Mayo Clinic Proc. 2007; 82: 159-65, CrossRef.
Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res. 2001; 89: 1092-103, CrossRef.
Rizvi M, Pathak D, Freedman JE, Chakrabarti S. CD40-CD40 ligand interactions in oxidative stress, inflammation and vascular disease. Trends Mol Med. 2008; 14: 530-8, CrossRef.
Muller O, Barbato E, De Bruyne B, Bartunek J. Biomarkers of vulnerable plaque: the missing link with ischemia. Biomarkers Med. 2010; 4: 375-83, CrossRef.
Bar-Or D, Curtis G, Rao N, Bampos N, Lau E. Characterization of the Co2+ and Ni2+ binding amino-acid residues of the N terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia. Eur J Biochem. 2001; 268: 42-8, CrossRef.
Bar-Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia – A preliminary report. J Emerg Med. 2000; 19: 311-5, CrossRef.
Chan B, Dodsworth N, Woodrow J, Tucker A, Harris R. Site-specific N terminal auto-degradation of human serum albumin. Eur J Biochem. 1995; 227: 524-8, CrossRef.
Roy D, Quiles J, Gaze DC, Collinson P, Kaski JC, Baxter GF. Role of reactive oxygen species on the formation of the novel diagnostic marker ischaemia modified albumin. Heart. 2006; 92: 113-4, CrossRef.
Bar-Or D, Winkler JV, Vanbenthuysen K, Harris L, Lau E, Hetzel FW. Reduced albumin-cobalt binding with transient myocardial ischemia after elective percutaneous transluminal coronary angioplasty: a preliminary comparison to creatine kinase MB, myoglobin, and troponin I. Am Heart J. 2003; 141: 985-91, CrossRef.
Sinha MK, Gaze DC, Tippins JR, Collinson PO, Kaski JC. Ischemia modified albumin is a sensitive marker of myocardial ischemia after percutaneous coronary intervention. Circulation. 2003; 107: 2403-5, CrossRef.
Richieri GV, Ogata RT, Kleinfeld AM. A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J Biol Chem 1992; 267: 23495-501, PMID.
Cantor WJ, Kim HH, Jolly S, Moe G, Burstein JM, Mendelsohn A, et al. B type natriuretic peptide and serum unbound free fatty acid levels after contemporary percutaneous coronary intervention. J Invasive Cardiol. 2008; 20: 186-8, PMID.
Kleinfeld AM, Prothro D, Brown DL, Davis RC, Richieri GV, DeMaria A. Increases in serum unbound free fatty acid levels following coronary angioplasty. Am J Cardiol. 1996; 78: 1350-4, CrossRef.
Danne O, Mockel M. Choline in acute coronary syndrome: an emerging biomarker with implications for the integrated assessment of plaque vulnerability. Expert Rev Mol Diagn. 2010; 10: 159-71, CrossRef.
LeLeiko RM, Vaccari CS, Sola S, Merchant N, Nagamia SH, Thoenes M, et al. Usefulness of elevations in serum choline and free F2 isoprostane to predict 30 day cardiovascular outcomes in patients with acute coronary syndrome. Am J Cardiol. 2009; 104: 638-43, CrossRef.
de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003; 362: 316-22, CrossRef.
Marumoto K, Hamada M, Hiwada K. Increased secretion of atrial and brain natriuretic peptides during acute myocardial ischaemia induced by dynamic exercise in patients with angina pectoris. Clin Sci. 1995; 88: 551-6, CrossRef.
Kyriakides ZS, Markianos M, Michalis L, Antoniadis A, Nikolaou NI, Kremastinos DT. Brain natriuretic peptide increases acutely and much more prominently than atrial natriuretic peptide during coronary angioplasty. Clin Cardiol. 2000; 23: 285-8, CrossRef.
Mega JL, Morrow DA, De Lemos JA, Sabatine MS, Murphy SA, Rifai N, et al. B-type natriuretic peptide at presentation and prognosis in patients with ST segment elevation myocardial infarction: an ENTIRE TIMI 23 substudy. J Am Coll Cardiol. 2004; 44: 335-9, CrossRef.
de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH, et al. The prognostic value of B type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001; 345: 1014-21, CrossRef.
Omland T, Sabatine MS, Jablonski KA, Rice MM, Hsia J, Wergeland R, et al. Prognostic value of B type natriuretic peptides in patients with stable coronary artery disease: the PEACE trial. J Am Coll Cardiol. 2007; 50: 205-14, CrossRef.
Kragelund C, Gronning B, Kober L, Hildebrandt P, Steffensen R. N terminal pro-B type natriuretic peptide and long-term mortality in stable coronary heart disease. N Engl J Med. 2005; 352: 666-75, CrossRef.
Bibbins-Domingo K, Gupta R, Na B, Wu AH, Schiller NB, Whooley MA. N terminal fragment of the prohormone brain-type natriuretic peptide (NT proBNP), cardiovascular events, and mortality in patients with stable coronary heart disease. JAMA. 2007; 297: 169-76, CrossRef.
Deo R, Shlipak MG, Ix JH, Ali S, Schiller NB, Whooley MA. Association of cystatin C with ischemia in patients with coronary heart disease. Clin Cardiol. 2009; 32: E18-22, CrossRef.
Sabatine MS, Morrow DA, de Lemos JA, Jarolim P, Braunwald E. Detection of acute changes in circulating troponin In the setting of transient stress test-induced myocardial ischaemia using an ultrasensitive assay: results from TIMI 35. Eur Heart J. 2009; 30: 162-9, CrossRef.
Shand JA, Menown IB, MvEneaney DJ. A timely diagnosis of myocardial infarction. Biomarkers Med. 2010; 4: 385-93, CrossRef.
Glatz JFC, van der Vusse GJ, Simoons ML, Kragten JA, van Dieijen-Visser MP, Hermens WT. Fatty acid-binding protein and the early detection of acute myocardial infarction. Clin Chim Acta. 1998; 272: 87-92, CrossRef.
Okamoto F, Sohmiya K, Ohkaru Y, Kawamura K, Asayama K, Kimura H, et al. Human heart-type cytoplasmic fatty acid-binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in comparison with myoglobin and creatine kinase isoenzyme MB. Clin Chem Lab Med. 2000; 38: 231-8, CrossRef.
Ecollan P, Collet J, Boon G, Tanguy ML, Fievet ML, Haas R, et al. Pre-hospital detection of acute myocardial infarction with ultra-rapid human fatty acid-binding protein (H-FABP) immunoassay. Int J Cardiol. 2007; 119: 349-54, CrossRef.
McCann CJ, Glover BM, Menown I, Moore MJ, McEneny J, Owens CG, et al. Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. Eur Heart J. 2008; 29: 2843-50, CrossRef.
Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res. 2003; 59: 812-23, CrossRef.
Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions: association of active enzyme synthesis with unstable angina. Circulation. 1995; 91: 2125-31, CrossRef.
Loftus IM, Naylor AR, Goodall S, Crowther M, Jones L, Bell PRF, et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques: a potential role in acute plaque disruption. Stroke. 2000; 31: 40-7, CrossRef.
Schönbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci. 2001; 58: 4-43, CrossRef.
Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998; 391: 591-4, CrossRef.
Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE, et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med. 1999; 5: 1313-6, CrossRef.
Mach F, Schönbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature. 1998; 394: 200-3, CrossRef.
Schonbeck U, Mach F, Sukhova GK, Murphy C, Bonnefoy JY, Fabunmi RP, et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res. 1997; 81: 448-54, CrossRef.
Graf D, Müller S, Korthäuer U, Kooten CV, Weise C, Kroczek RA. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol. 1995; 25: 1749-54, CrossRef.
Heeschen C, Dimmler S, Hamm C, van den Brand MJ, Boersma E, Zeiher AM, et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med. 2003; 348: 1104-11, CrossRef.
Lawrence JB, Oxvig C, Overgaard MT, Sottrup-Jensen L, Gleich GJ, Hays LG, et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci USA. 1999; 96: 3149-53, CrossRef.
Wald N, Stone R, Cuckle HS, Grudzinskas JG, Barkai G, Brambati B, et al. First trimester concentrations of pregnancy associated plasma protein A and placental protein 14 in Down’s syndrome. BMJ. 1992; 305: 28, CrossRef.
Bayes-Genis A, Conover CA, Overgaard MT, Bailey KR, Christiansen M, Holmes DR, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001; 345: 1022-9, CrossRef.
Heeschen C, Dimmeler S, Hamm CW, Fichtlscherer S, Simoons ML, Zeiher AM. Pregnancy-associated plasma protein-A levels in patients with acute coronary syndromes: comparison with markers of systemic inflammation, platelet activation, and myocardial necrosis. J Am Coll Cardiol. 2005; 45: 229-37, CrossRef.
Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med. 2009; 361: 868-77, CrossRef.
Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med. 2009; 361: 858-67, CrossRef.
Apple FS, Smith SW, Pearce LA, Ler R, Murakami MM. Use of the centaur TnI-ultra assay for detection of myocardial infarction and adverse events in patients presenting with symptoms suggestive of acute coronary syndrome. Clin Chem. 2008; 54: 723-8, CrossRef.
Mingels A, Jacobs L, Michielsen E, Swaanenburg J, Wodzig W, van Dieijen-Visser M. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem. 2009; 55: 101-8, CrossRef.
Melanson SE, Morrow DA, Jarolim P. Earlier detection of myocardial injury in a preliminary evaluation using a new troponin I assay with improved sensitivity. Am J Clin Pathol. 2007; 128: 282-6, CrossRef.
Gaze DC. High-sensitive cardiac troponin assays: application for prime-time use. Biomarkers Med. 2010; 4: 341-3, PMID.
Twerenbold R, Reichlin T, Mueller C. Clinical application of sensitive cardiac troponin assays: potential and limitations. Biomarkers Med. 2010; 4: 395-401, CrossRef.
Vasile VC, Saenger AK, Kroning JM, Jaffe AS. Biological and analytical variability of a novel high-sensitivity cardiac troponin T assay. Clin Chem. 2010; 56: 1086-90, CrossRef.
Johansen JS. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull. 2006; 53: 172-209, PMID.
Johansen JS, Williamson MK, Rice JS, Price PA. Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res. 1992; 7: 501-12, CrossRef.
Hakala BE, White C, Recklies AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 1993; 268: 25803-10, PMID.
Morrison BW, Leder P. neu and ras initiate murine mammary tumors that share genetic markers generally absent in c-myc and int-2-initiated tumors. Oncogene. 1994; 9: 3417-26, PMID.
Shackelton LM, Mann DM, Millis AJ. Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J Biol Chem. 1995; 270: 13076-83, CrossRef.
Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997; 43: 221-5, CrossRef.
Harvey S, Weisman M, O’Dell J, Scott T, Krusemeier M, Visor J, et al. Chondrex: new marker of joint disease. Clin Chem. 1998; 44: 509-16, PMID.
Mohanty AK, Singh G, Paramasivam M, Saravanan K, Jabeen T, Sharma S, et al. Crystal structure of a novel regulatory 40-kDa mammary gland protein (MGP-40) secreted during involution. J Biol Chem. 2003; 278: 14451-60, CrossRef.
Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2007; 117: 195-205, CrossRef.
Libby P, Braunwald E. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 8th Ed. Philadelphia: Saunders/Elsevier; 2008, NLMID.
Baeten D, Boots AM, Steenbakkers PG, Elewaut D, Bos E, Verheijden GFM, et al. Human cartilage gp-39+,CD16+ monocytes in peripheral blood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis Rheum. 2000; 43: 1233-43, CrossRef.
Kirkpatrick RB, Matico RE, McNulty DE, Strickler JE, Rosenberg M. An abundantly secreted glycoprotein from Drosophila melanogaster is related to mammalian secretory proteins produced in rheumatoid tissues and by activated macrophages. Gene. 1995; 153: 147-54, CrossRef.
Krause SW, Rehli M, Kreutz M, Schwarzfischer L, Paulauskis JD, Andreesen R. Differential screening identifies genetic markers of monocyte to macrophage maturation. J Leukoc Biol. 1996; 60: 540-5, PMID.
Rehli M, Niller HH, Ammon C, Langmann S, Schwarzfischer L, Andreesen R, et al. Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation. J Biol Chem. 2003; 278: 44058-67, CrossRef.
Boot RG, van Achterberg TA, van Aken BE, Renkema GH, Jacobs MJHM, Aerts JMFG, et al. Strong induction of members of the chitinase family of proteins in atherosclerosis: chitotriosidase and human cartilage gp-39 expressed in lesion macrophages. Arterioscler Thromb Vasc Biol. 1999; 19: 687-94, CrossRef.
Nojgaard C, Host NB, Christensen IJ, Poulsen SH, Egstrup K, Price PA, et al. Serum levels of YKL-40 increases in patients with acute myocardial infarction. Coron Artery Dis. 2008; 19: 257-63, CrossRef.
Wang Y, Ripa RS, Johansen JS, Gabrielsen A, Steinbrüchel DA, Friis T, et al. YKL-40 a new biomarker in patients with acute coronary syndrome or stable coronary artery disease. Scand Cardiovasc J. 2008; 42: 295-302, CrossRef.
Hedegaard A, Sejersten RR, Johansen JS, Jorgensen E, Kastrup J. Plasma YKL-40 and recovery of left ventricular function after acute myocardial infarction. Scand J Clin Lab Invest. 2010; 70: 80-6, CrossRef.
Kastrup J, Johansen JS, Winkel P, Hansen JF, Hildebrandt P, Jensen GB, et al. High serum YKL-40 concentration is associated with cardiovascular and all-cause mortality in patients with stable coronary artery disease. Eur Heart J. 2009; 30: 1066-72, CrossRef.
Kucur M, Isman FK, Karadag B, Vural VA, Tavsanoglu S. Serum YKL-40 levels in patients with coronary artery disease. Coron Artery Dis. 2007; 18: 391-6, CrossRef.
Rathcke CN, Raymond I, Kistorp C, Hildebrandt P, Faber J, Vestergaard H. Low grade inflammation as measured by levels of YKL-40: association with an increased overall and cardiovascular mortality rate in an elderly population. Int J Cardiol. 2009; 143: 35-42, CrossRef.
Reichlin T, Hochholzer W, Stelzig C, Laule K, Freidank H, Morgenthaler NG, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol. 2009; 54: 60-8, CrossRef.
Morsted A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007; 93: 1137-46, CrossRef.
Dalzell JR, Jackson CE, McDonagh TA, Gardner RS. Novel biomarkers in heart failure: an overview. Biomarkers Med. 2009; 3: 453-63, CrossRef.
Tang WH, Francis GS, Morrow DA, Newby LK, Cannon CP, Jesse RL, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: utilization of cardiac biomarker testing in heart failure. Circulation. 2007; 116: E99-109, CrossRef.
ESC guidelines for the diagnosis and treatment of acute and chronic heat failure 2008. the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association and endorsed by the European Society of Intensive Care Medicine. Eur Heart J. 2008; 29: 2388-442, PMID.
Bartunek J. Biomarkers: old-new, cardiac-noncardiac, all paving the way for better stratification in heart failure. Biomarkers Med 2009; 3: 435-7, CrossRef.
Vanderheyden M, Vrints C, Verstreken S, Beunk J, Goethals M. B-type batriuretic peptide as a marker of heart failure: new insights from biochemistry and clinical implications. Biomarkers Med. 2010; 4: 315-20, CrossRef.
Buchner S, Jungbauer C, Birner C, Debl K, Riegger GA, Luchner A. Comparison of the cardiac markers B-type natriuretic peptide and N-terminal pro B-type natriuretic peptide. Biomarkers Med. 2009; 3: 465-81, CrossRef.
Karmpaliotis D, Kirtane AJ, Ruisi CP, Polonsky T, Malhotra A, Talmor D, et al. Diagnostic and prognostic utility of brain natriuretic peptide in subjects admitted to the ICU with hypoxic respiratory failure due to noncardiogenic and cardiogenic pulmonary edema. Chest. 2007; 131: 964-71, CrossRef.
Kucher N, Goldhaber SZ. Cardiac biomarkers for risk stratification of patients with acute pulmonary embolism. Circulation. 2003; 108: 2191-4, CrossRef.
Grabowski M, Filipiak KJ, Malek LA, Karpinski G, Huczek Z, Stolarz P, et al. Admission B-type natriuretic peptide assessment improves early risk stratification by Killip classes and TIMI risk score in patients with acute ST elevation myocardial infarction treated with primary angioplasty. Int J Cardiol. 2007; 115: 386-90, CrossRef.
Charpentier J, Luyt CE, Fulla Y, Vinsonneau C, Cariou A, Grabar S, et al. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med. 2004; 32: 660-5, CrossRef.
McLean AS, Huang SJ, Hyams S, Poh G, Nalos M, Pandit R, et al. Prognostic values of B-type natriuretic peptide in severe sepsis and septic shock. Crit Care Med. 2007; 35: 1019-26, CrossRef.
Gardner RS, Chong KS, McDonagh TA. B-type natriuretic peptides in heart failure. Biomark Med. 2007; 1: 243-50, CrossRef.
Gegenhuber A, Struck J, Poelz W, Pacher R, Morgenthaler NG, Bergmann A, et al. Midregional pro-A-type natriuretic peptide measurements for diagnosis of acute destabilized heart failure in short-of-breath patients: comparison with B-type natriuretic peptide (BNP) and amino-terminal proBNP. Clin Chem. 2006; 52: 827-31, CrossRef.
Von Haehling S, Jankowska EA, Morgenthaer NG, Vassanelli C, Zanolla L, Rozentryt P, et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type batriuretic peptide in predicting survival in patients with chronic heart failure. J Am Coll Cardiol. 2007; 50: 1973-80, CrossRef.
Moertl D, Berger R, Struck J, Gleiss A, Hammer A, Morgenthaler NG, et al. Comparison of midregional pro-ANP and B-type natriuretic peptides in chronic heart failure. J Am Coll Cardiol. 2009; 53: 1783-90, CrossRef.
Elmas E, Brueckmann M, Lang S, Kälsch T, Haghi D, Sueselbeck T, et al. Midregional pro-atrial natriuretic peptide is a useful indicator for the detection of impaired left ventricular function in patients with coronary artery disease. Int J Cardiol. 2008; 128: 244-9, CrossRef.
Bunton DC, Petrie MC, Hillier C, Johnston F, McMurray JJ. The clinical relevance of adrenomedullin: a promising profile? Pharmacol Ther. 2004; 103: 179-201, CrossRef.
Pousset F, Masson F, Chavirovskaia O, Isnard R, Carayon A, Golmard JL, et al. Plasma adrenomedullin, a new independent predictor of prognosis in patients with chronic heart failure. Eur Heart J. 2000; 21: 1009-14, CrossRef.
Morgenthaler NG, Struck J, Alonso C, Bergmann A. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin Chem. 2005; 51: 1823-9, CrossRef.
Elmas E, Lang S, Dempfle CE, Kälsch T, Papassotiriou J, Morgenthaler NG, et al. Diagnostic performance of mid-regional pro-adrenomedullin as an analyte for the exclusion of left ventricular dysfunction. Int J Cardiol. 2008; 128: 107-11, CrossRef.
Khan SQ, O’Brien RJ, Struck J, Quinn P, Morgenthaler N, Squire I, et al. Prognostic value of midregional pro-adrenomedullin in patients with acute myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) study. J Am Coll Cardiol. 2007; 49: 1525-32, CrossRef.
Adlbrecht C, Hülsmann M, Strunk G, Berger R, Mörtl D, Struck J, et al. Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. Eur J Heart Fail. 2009; 11: 361-6, CrossRef.
Finley JJ 4th, Konstam MA, Udelson JE. Arginine vasopressin antagonists for the treatment of heart failure and hyponatremia. Circulation. 2008; 118: 410-21, CrossRef.
Goldsmith SR, Francis GS, Cowley AW Jr, Levine TB, Cohn JN. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol. 1983; 1: 1385-90, CrossRef.
Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006; 52: 112-9, CrossRef.
Khan SQ, Dhillon OS, O’Brien RJ, Struck J, Quinn PA, Morgenthaler NG, et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation. 2007; 115: 2103-10, CrossRef.
Kelly D, Squire IB, Khan SQ, Quinn P, Struck J, Morgenthaler NG, et al. C-terminal provasopressin (copeptin) is associated with left ventricular dysfunction, remodeling, and clinical heart failure in survivors of myocardial infarction. J Card Fail. 2008; 14: 739-45, CrossRef.
Voors AA, von Haehling S, Anker SD, Hillege HL, Struck J, Hartmann O, et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur Heart J. 2009; 30: 1187-94, CrossRef.
Gegenhuber A, Struck J, Dieplinger B, Poelz W, Pacher R, Morgenthaler NG, et al. Comparative evaluation of B-type natriuretic peptide, mid-regional pro-A-type natriuretic peptide, mid-regional pro-adrenomedullin, and copeptin to predict 1-year mortality in patients with acute destabilized heart failure. J Card Fail. 2007; 13: 42-9, CrossRef.
Stoiser B, Mörtl D, Hülsmann M, Berger R, Struck J, Morgenthaler NG, et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Invest. 2006; 36: 771-8, CrossRef.
Neuhold S, Huelsmann M, Strunk G, Stoiser B, Struck J, Morgenthaler NG, et al. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease. J Am Coll Cardiol. 2008; 52: 266-72, CrossRef.
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc. 2004; 79: 769-94, CrossRef.
Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B,et al. Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J. 2007; 28: 1117-27, CrossRef.
Taupenot L, Harper KL, O’Connor DT. The chromogranin-secretogranin family. N Engl J Med. 2003; 348: 1134-49, CrossRef.
Ceconi C, Ferrari R, Bachetti T, Opasich C, Volterrani M, Colombo B, et al. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur Heart J. 2002; 23: 967-74, CrossRef.
Dieplinger B, Gegenhuber A, Struck J, Poelz W, Langsteger W, Haltmayer M, et al. Chromogranin A and C-terminal endothelin-1 precursor fragment add independent prognostic information to amino-terminal proBNP in patients with acute destabilized heart failure. Clin.Chim Acta. 2009; 400: 91-6, CrossRef.
Kleinz MJ, Davenport AP. Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept. 2004; 118: 119-25, CrossRef.
O’Dowd BF, Heiber M, Chan A, Heng HHQ, Tsui L-C, Kennedy JL, et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993; 136: 355-60, CrossRef.
Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, et al. Characterization of apelin, the ligand for the APJ receptor. J Neurochem. 2000; 74: 34-41, CrossRef.
Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, et al. The novel peptide apelin lowers blood pressure via a nitric oxide dependent mechanism. Regul Pept. 2001; 99: 87-92, CrossRef.
Jia YX, Lu ZF, Zhang J, Pan CS, Yang JH, Zhao J, et al. Apelin activates l-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Peptides. 2007; 28: 2023-9, CrossRef.
Japp AG, Cruden NL, Amer DA, Li VKY, Goudie EB, Johnston NR, et al. Vascular effects of apelin in vivo in man. J Am Coll Cardiol. 2008; 52: 908-13, CrossRef.
De Mota N, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, Dujardin C, et al. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA. 2004; 101: 10464-9, CrossRef.
Hus-Citharel A, Bouby N, Frugière A, Bodineau L, Gasc JM, Llorens-Cortes C. Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int. 2004; 74: 486-94, CrossRef.
Ernst KV, Ashley EA, Charo D, Kawana M, Fajardo G, Bernstein D, et al. Apelin regulates cardiac contractility and rescues neurohormonal heart failure. Circulation. 2006; 12: S1, CrossRef.
Szokodi I, Tavi P, Foldes G, Voutilainen-Myllylä S, Ilves M, Tokola H, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates contractility. Circ Res. 2002; 91: 434-40, CrossRef.
Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, Soppa GK, et al. Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Comm. 2007; 357: 889-95, CrossRef.
Jia YX, Pan CS, Zhang J, Geng B, Zhao J, Gerns H, et al. Apelin protects myocardial injury induced by isoproterenol in rats. Regul Pept. 2006; 133: 147-54, CrossRef.
Berry MF, Pirolli TJ, Jayasankar V, Burdick J, Morine KJ, Gardner TJ, et al. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation. 2004; 110 (Suppl 11): 187-93, CrossRef.
Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, et al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res. 2005; 65: 73-82, CrossRef.
Kuba K, Zhang L, Imai Y, Arab S, Chen M, Maekawa Y, et al. Impaired heart contractility in apelin gene-deficient mice associated with aging and pressure overload. Circ Res. 2007; 101: E32-42, CrossRef.
Weir RA, Chong KS, Dalzell JR, Petrie CJ, Murphy CA, Steedman T, et al. Plasma apelin concentration is depressed following acute myocardial infarction in man. Eur J Heart Fail. 2009; 11: 551-8, CrossRef.
Chong KS, Gardner RS, Morton JJ, Ashley EA, McDonagh TA. Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur J Heart Fail. 2006; 8: 355-60, CrossRef.
Chen MM, Ashley EA, Deng DX, Tsalenko A, Deng A, Tabibiazar R, et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation. 2003; 108: 1432-9, CrossRef.
Francia P, Salvati A, Balla C, De Paolis P, Pagannone E, Borro M, et al. Cardiac resynchronization therapy increases plasma levels of the endogenous inotrope apelin. Eur J Heart Fail. 2007; 9: 306-9, CrossRef.
Goetze JP, ReCHFeld JF, Carlsen J, Videbaek R, Andersen CB, Boesgaard S, et al. Apelin: a new plasma marker of cardiopulmonary disease. Regul Pept. 2006; 133: 134-8, CrossRef.
Földes G, Horkay F, Szokodi I, Vuolteenaho O, Ilves M, Lindstedt KA, et al. Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun. 2003; 308: 480-5, CrossRef.
Mullens W, Bartunek J, Wilson Tang WH, Delrue L, Herbots L, Willems R, et al. Early and late effects of cardiac resynchronization therapy on force-frequency relation and contractility regulating gene expression in heart failure patients. Heart Rhythm. 2008; 5: 52-9, CrossRef.
Burnett JC Jr. Urocortin: advancing the neurohumoral hypothesis of heart failure. Circulation. 2005; 112: 3544-6, CrossRef.
Parkes DG, Vaughan J, Rivier J, Vale W, May CN. Cardiac inotropic actions of urocortin in conscious sheep. Am J Physiol. 1997; 272: H2115-22, PMID.
Chen ZW, Huang Y, Yang Q, Li X, Wei W, He GW. Urocortin-induced relaxation in the human internal mammary artery. Cardiovasc Res. 2005; 65: 913-20, CrossRef.
Sanz E, Monge L, Fernández N, Martínez MA, Martínez-León JB, Diéguez G, et al. Relaxation by urocortin of human saphenous veins. Br J Pharmacol. 2002; 136: 90-4, CrossRef.
Nishikimi T, Miyata A, Horio T, Yoshihara F, Nagaya N, Takishita S, et al. Urocortin, a member of the corticotropin-releasing factor family, in normal and diseased heart. Am J Physiol Heart Circ Physiol. 2000; 279: H3031-9, PMID.
Ikeda K, Tojo K, Sato S, Ebisawa T, Tokudome G, Hosoya T, et al. Urocortin, a newly identified corticotropin-releasing factor-related mammalian peptide, stimulates atrial natriuretic peptide and brain natriuretic peptide secretions from neonatal rat cardiomyocytes. Biochem Biophys Res Commun. 1998; 250: 298-304, CrossRef.
Rademaker MT, Charles CJ, Espiner EA, Frampton CM, Lainchbury JG, Richards AM. Four-day urocortin-I administration has sustained beneficial haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J. 2005; 26: 2055-62, CrossRef.
Rademaker MT, Cameron VA, Charles CJ, Richards AM. Integrated hemodynamic, hormonal, and renal actions of urocortin 2 in normal and paced sheep: beneficial effects in heart failure. Circulation 2005; 112: 3624-32, CrossRef.
Rademaker MT, Cameron VA, Charles CJ, Richards AM. Urocortin 3: haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J. 2006; 27: 2088-98, CrossRef.
Bale TL, Hoshijima M, Gu Y, Dalton N, Anderson KR, Lee KF, et al. The cardiovascular physiologic actions of urocortin II: acute effects in murine heart failure. Proc Natl Acad Sci USA. 2004; 101: 3697-702, CrossRef.
Rademaker MT, Charles CJ, Richards AM. Urocortin 1 administration from onset of rapid left ventricular pacing represses progression to overt heart failure. Am J Physiol Heart Circ Physiol. 2007; 293: H1536-44, CrossRef.
Ng LL, Loke IW, O’Brien RJ, Squire IB, Davies JE. Plasma urocortin in human systolic heart failure. Clin Sci. 2004; 106: 383-8, CrossRef.
Crane FL, Hatefi Y, Lester RL, Widmer C. Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 1957; 25: 220-1, CrossRef.
Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci USA. 1985; 82: 901-4, CrossRef.
Molyneux SL, Florkowski CM, George PM, Pilbrow AP, Frampton CM, Lever M, et al. Coenzyme Q10: an independent predictor of mortality in chronic heart failure. J Am Coll Cardiol. 2008; 52: 1435-41, CrossRef.
Sander S, Coleman CI, Patel AA, Kluger J, White CM. The impact of coenzyme Q10 on systolic function in patients with chronic heart failure. J Card Fail. 2006; 12: 464-72, CrossRef.
Mortensen SA. Overview on coenzyme Q10 as adjunctive therapy in chronic heart failure. Rationale, design and end-points of “Q-symbio” – a multinational trial. Biofactors. 2003; 18: 79-89, CrossRef.
Hopkins TA, Ouchi N, Shibata R, Walsh K. Adiponectin actions in the cardiovascular system. Cardiovasc Res. 2007; 74: 11-8, CrossRef.
Fujioka D, Kawabata K, Saito Y, Kobayashi T, Nakamura T, Kodama Y, et al. Role of adiponectin receptors in endothelin-induced cellular hypertrophy in cultured cardiomyocytes and their expression in infarcted heart. Am J Physiol Heart Circ Physiol. 2006; 290: H2409-16, CrossRef.
Dieplinger B, Gegenhuber A, Poelz W, Haltmayer M, Mueller T. Prognostic value of increased adiponectin plasma concentrations in patients with acute destabilized heart failure. Clin Biochem 2009; 42: 1190-3, CrossRef.
Tanaka T, Tsutamoto T, Sakai H, Nishiyama K, Fujii M, Yamamoto T, et al. Effect of atrial natriuretic peptide on adiponectin in patients with heart failure. Eur J Heart Fail. 2008; 10: 360-6, CrossRef.
Kistorp C, Faber J, Galatius S, Gustafsson F, Frystyk J, Flyvbjerg A, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation. 2005; 112: 1756-62, CrossRef.
Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002; 91: 988-98, CrossRef.
Yanagisawa K, Tsukamoto T, Takagi T, Tominaga S. Murine ST2 gene is a member of the primary response gene family induced by growth factors. FEBS Lett. 1992; 302: 51-3, CrossRef.
Townsend MJ, Fallon PG, Matthews DJ, Jolin HE, McKenzie AN. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J Exp Med. 2000; 191: 1069-76, CrossRef.
Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002; 106: 2961-6, CrossRef.
Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005; 23: 479-90, CrossRef.
Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007; 117: 1538-49, CrossRef.
Sabatine MS, Morrow DA, Higgins LJ, MacGillivray C, Guo W, Bode C, et al. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation. 2008; 117: 1936-44, CrossRef.
Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail. 2008; 14: 732-8, CrossRef.
Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008; 52: 1458-65, CrossRef.
Januzzi JL Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007; 50: 607-13, CrossRef.
Mueller T, Dieplinger B, Gegenhuber A, Poelz W, Pacher R, Haltmayer M. Increased plasma concentrations of soluble ST2 are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin Chem. 2008; 54: 752-6, CrossRef.
Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003; 107: 721-6, CrossRef.
Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, et al. The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006; 98: 351-60, CrossRef.
Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006; 98: 342-50, CrossRef.
Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007; 50: 1054-60, CrossRef.
Garlanda C, Bottazzi B, Bastone A, Mantovani A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition and female fertility. Annu Rev Immunol. 2005; 23: 337-66, CrossRef.
Latini R, Maggioni AP, Peri G, Gonzini L, Lucci D, Mocarelli P, et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2004; 110: 2349-54, CrossRef.
Suzuki S, Takeishi Y, Niizeki T, Koyama Y, Kitahara T, Sasaki T, et al. Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure. Am Heart J. 2008; 155: 75-8, CrossRef.
Kotooka N, Inoue T, Aoki S, Anan M, Komoda H, Node K. Prognostic value of pentraxin 3 in patients with chronic heart failure. Int J Cardiol. 2008; 130: 19-22, CrossRef.
Xie Z, Pimental DR, Lohan S, Vasertriger A, Pligavko C, Colucci WS, et al. Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species. J Cell Physiol. 2001; 188: 132-8, CrossRef.
Singh K, Sirokman G, Communal C, Robinson KG, Conrad CH, Brooks WW, et al. Myocardial osteopontin expression coincides with the development of heart failure. Hypertension. 1999; 33: 663-70, CrossRef.
Xie Z, Singh M, Singh K. Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice. Hypertension. 2004; 44: 826-31, CrossRef.
Kramer F, Sandner P, Klein M, Krahn T. Plasma concentrations of matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1 and osteopontin reflect severity of heart failure in DOCA-salt hypertensive rat. Biomarkers. 2008; 13: 270-81, CrossRef.
Stawowy P, Blaschke F, Pfautsch P, Goetze S, Lippek F, Wollert-Wulf B, et al. Increased myocardial expression of osteopontin in patients with advanced heart failure. Eur J Heart Fail. 2002; 4: 139-46, CrossRef.
Satoh M, Nakamura M, Akatsu T, Shimoda Y, Segawa I, Hiramori K. Myocardial osteopontin expression is associated with collagen fibrillogenesis in human dilated cardiomyopathy. Eur J Heart Fail. 2005; 7: 755-62, CrossRef.
Rosenberg M, Zugck C, Nelles M, Juenger C, Frank D, Remppis A, et al. Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail. 2008; 15: 43-9, CrossRef.
Pennica D, Swanson TA, Shaw KJ, Kuang WJ, Gray CL, Beatty BG, et al. Human cardiotrophin-1: protein and gene structure, biological and binding activities, and chromosomal localization. Cytokine. 1996; 8: 183-9, CrossRef.
Pemberton CJ, Raudsepp SD, Yandle TG, Cameron VA, Richards AM. Plasma cardiotrophin-1 is elevated in human hypertension and stimulated by ventricular stretch. Cardiovasc Res. 2005; 68: 109-17, CrossRef.
Zolk O, Engmann S, Münzel F, Krajcik R. Chronic cardiotrophin-1 stimulation impairs contractile function in reconstituted heart tissue. Am J Physiol Endocrinol Metab. 2005; 288: E1214-21, CrossRef.
Jin H, Yang R, Keller GA, Ryan A, Ko A, Finkle D, et al. In vivo effects of cardiotrophin-1. Cytokine. 1996; 8: 920-6, CrossRef.
Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2001; 38: 1485-90, CrossRef.
Tsutamoto T, Asai S, Tanaka T, Sakai H, Nishiyama K, Fujii M, et al. Plasma level of cardiotrophin-1 as a prognostic predictor in patients with chronic heart failure. Eur J Heart Fail. 2007; 9: 1032-7, CrossRef.
Li Y, Komai-Koma M, Gilchrist DS, Hsu DK, Liu F-T, Springall T, et al. Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation. J Immunol. 2008; 181: 2781-9, CrossRef.
Abrahamson M, Olafsson I, Palsdottir A, Ulvsbäck M, Lundwall Å, Jensson O, et al. Structure and expression of the human cystatin C gene. Biochem J. 1990; 268: 287-94, CrossRef.
Lassus J, Harjola VP, Sund R, Siirila-Waris K, Melin J, Peuhkurinen K, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007; 28: 1841-7, CrossRef.
Ix JH, Shlipak MG, Chertow GM, Whooley MA. Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study. Circulation. 2007; 115: 173-9, CrossRef.
Arimoto T, Takeishi Y, Niizeki T, Takabatake N, Okuyama H, Fukui A, et al. Cystatin C, a novel measure of renal function, is an independent predictor of cardiac events in patients with heart failure. J Card Fail. 2005; 11: 595-601, CrossRef.
Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger S, Newman A, et al. Cystatin-C and mortality in elderly persons with heart failure. J Am. Coll Cardiol. 2005; 45: 268-71, CrossRef.
Jackson CE, Dalzell JR, Gardner RS. Prognostic utility of cardiac troponin in heart failure: a novel role for an established biomarker. Biomarkers. 2009; 3: 483-93, CrossRef.
Gros R, Benovic JL, Tan CM, Feldman RD. G-protein-coupled receptor kinase activity is increased in hypertension. J Clin Invest. 1997; 99: 2087-93, CrossRef.
Usui I, Imamura T, Satoh H, Huang J, Babendure JL, Hupfeld CJ, et al. GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation. EMBO J. 2004; 23: 2821-9, CrossRef.
Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation. 1993; 87: 454-63, CrossRef.
Cross HR, Steenbergen C, Lefkowitz RJ, Koch WJ, Murphy E. Overexpression of the cardiac β2-adrenergic receptor and expression of a β-adrenergic receptor kinase-1 (βARK1) inhibitor both increase myocardial contractility but have differential effects on susceptibility to ischemic injury. Circ Res. 1999; 85: 1077-84, CrossRef.
Iaccarino G, Koch WJ. Therapeutic potential of G-protein coupled receptor kinases in the heart. Expert Opin Investig Drugs. 1999; 8: 545-54, CrossRef.
Penela P, Murga C, Ribas C, Tutor AS, Peregrín S, Mayor F Jr. Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res. 2006; 69: 46-56, CrossRef.
Iaccarino G, Barbato E, Cipolletta E, De Amicis V, Margulies KB, Leosco D, et al. Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur Heart J. 2005; 26: 1752-8, CrossRef.
Dzimiri N, Basco C, Moorji A, Afrane B, Al-Halees Z. Characterization of lymphocyte β2-adrenoceptor signalling in patients with left ventricular volume overload disease. Clin Exp Pharmacol Physiol. 2002; 29: 181-8, CrossRef.
Park SJ, Choi DJ, Kim CW. Hypertensive left ventricular hypertrophy: relation to β-adrenergic receptor kinase-1 (βARK1) in peripheral lymphocytes. J Hypertens. 2004; 22: 1025-32, CrossRef.
Hata JA, Williams ML, Schroder JN, Lima B, Keys JR, Blaxall BC, et al. Lymphocyte levels of GRK2 (βARK1) mirror changes in the LVAD-supported failing human heart: lower GRK2 associated with improved β-adrenergic signaling after mechanical unloading. J Card Fail. 2006; 12: 360-8, CrossRef.
Campanile A, Iaccarino G. G-protein-coupled receptor kinases in cardiovascular conditions: focus on G-protein-coupled receptor kinase 2, a gain in translational medicine. Biomarkers Med. 2009; 3: 525-40, CrossRef.
Bhaila V, Kalogeropoulos A, Georgiopoulou V, Butler J. Serum resistin: physiology, patophysiology, and implications for geart failure. Biomarkers Med. 2010; 4: 445-52, CrossRef.
Deardorff R, Spinale FG. Cytokines and matrix metalloproteinases as potential biomarkers in chronic heart failure. Biomarkers Med. 2009; 3: 513-23, CrossRef.
Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000; 102: 3060-7, CrossRef.
Noji Y, Shimizu M, Ino H, Higashikata T, Yamaguchi M, Nohara A, et al. Increased circulating matrix metalloproteinase-2 in patients with hypertrophic cardiomyopathy with systolic dysfunction. Circ J. 2004; 68: 355-60, CrossRef.
Frantz S, Stork S, Michels K, Eigenthaler M, Ertl G, Bauersachs J, et al. Tissue inhibitor of metalloproteinases levels in patients with chronic heart failure: an independent predictor of mortality. Eur J Heart Fail. 2008; 10: 388-95, CrossRef.
Lommi J, Pulkki K, Koskinen P, Naveri H, Leinonen H, Harkonen M, et al. Haemodynamic, neuroendocrine and metabolic correlates of circulating cytokine concentrations in congestive heart failure. Eur Heart J. 1997; 18: 1620-5, CrossRef.
Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001; 103: 2055-9, CrossRef.
Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation. 1995; 92: 1479-86, CrossRef.
Kelly D, Khan SQ, Thompson M, Cockerill G, Ng LL, Samani N, et al. Plasma tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9: novel indicators of left ventricular remodelling and prognosis after acute myocardial infarction. Eur Heart J. 2008; 29: 2116-24, CrossRef.
Valgimigli M, Ceconi C, Malagutti P, Merli E, Soukhomovskaia O, Francolini G, et al. Tumor necrosis factor-α receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study. Circulation. 2005; 111: 863-70, CrossRef.
Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol. 2006; 48: 89-96, CrossRef.
Niethammer M, Sieber M, von Haehling S, Anker SD, Munzel T, Horstick G, et al. Inflammatory pathways in patients with heart failure and preserved ejection fraction. Int J Cardiol. 2008; 129: 111-7, CrossRef.
Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001; 285: 2370-5, CrossRef.
Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006; 114: 119-25, CrossRef.
Friberg J, Buch P, Scharling H, Gadsbphioll N, Jensen GB. Rising rates of hospital admissions for atrial fibrillation. Epidemiology. 2003; 14: 666-72, CrossRef.
Stewart S, Hart CL, Hole DJ, McMurray JJ. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. Heart. 2001; 86: 516-21, CrossRef.
Reynolds MR, Lavelle T, Essebag V, Cohen DJ, Zimetbaum P. Influence of age, sex, and atrial fibrillation recurrence on quality of life outcomes in a population of patients with new-onset atrial fibrillation: the Fibrillation Registry Assessing Costs, Therapies, Adverse events and Lifestyle (FRACTAL) study. Am Heart J. 2006; 152: 1097-103, CrossRef.
Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998; 98: 946-52, CrossRef.
Wolf PA, Mitchell JB, Baker CS, Kannel WB, D’Agostino RB. Impact of atrial fibrillation on mortality, stroke, and medical costs. Arch Intern Med. 1998; 158: 229-34, CrossRef.
Wattigney WA, Mensah GA, Croft JB. Increasing trends in hospitalization for atrial fibrillation in the United States, 1985 through 1999: implications for primary prevention. Circulation. 2003; 108: 711-6, CrossRef.
Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham Heart Study. JAMA. 1994; 271: 840-4, CrossRef.
Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med. 1995; 98: 476-84, CrossRef.
Wolf PA, Benjamin EJ, Belanger AJ, Kannel WB, Levy D, D’Agostino RB. Secular trends in the prevalence of atrial fibrillation: the Framingham Study. Am Heart J. 1996; 131: 790-5, CrossRef.
Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D’Agostino RB, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009; 373: 739-45, CrossRef.
Liu T, Li G, Li L, Korantzopoulos P. Association between C-reactive protein and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. J Am Coll Cardiol. 2007; 49: 1642-8, CrossRef.
Mukamal KJ, Tolstrup JS, Friberg J, Gronbaek M, Jensen G. Fibrinogen and albumin levels and risk of atrial fibrillation in men and women (the Copenhagen City Heart Study). Am J Cardiol. 2006; 98: 75-81, CrossRef.
Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004; 350: 655-63, CrossRef.
Dixen U, Ravn L, Soeby-Rasmussen C, Paulsen AW, Parner J, Frandsen E, et al. Raised plasma aldosterone and natriuretic peptides in atrial fibrillation. Cardiology. 2007; 108: 35-9, CrossRef.
Marcucci R, Betti I, Cecchi E, Poli D, Giusti B, Fedi S, et al. Hyperhomocysteinemia and vitamin B6 deficiency: new risk markers for nonvalvular atrial fibrillation? Am Heart J. 2004; 148: 456-61, CrossRef.
Marin F, Roldan V, Climent VE, Ibáñez A, García A, Marco P, et al. Plasma von Willebrand factor, soluble thrombomodulin, and fibrin D-dimer concentrations in acute onset non-rheumatic atrial fibrillation. Heart. 2004; 90: 1162-6, CrossRef.
Ikeda U, Yamamoto K, Shimada K. Biochemical markers of coagulation activation in mitral stenosis, atrial fibrillation, and cardiomyopathy. Clin Cardiol. 1997; 20: 7-10, CrossRef.
Asselbergs FW, van den Berg MP, Diercks GF, van Gilst WH, van Veldhuisen DJ. C-reactive protein and microalbuminuria are associated with atrial fibrillation. Int J Cardiol. 2005; 98: 73-7, CrossRef.
Schnabel RB, Larson MG, Yamamoto JF, Sullivan LM, Pencina MJ, Meigs JB, et al. Relation of biomarkers of distinct patophysiological pathways and atrial fibrillation incidence in the community. Circulation. 2010; 121: 200-7, CrossRef.
Henningsen KM, Therkelsen SK, Johansen JS, Bruunsgaard H, Svendsen JH. Plasma YKL-40, a new biomarker for atrial fibrillation? Europace. 2009; 11: 1032-6, CrossRef.
Mathiasen BA, Henningsen KMA, Harutyunyan MJ, Myhind ND, Kastrup J. YKL-40: a new biomarker in cardiovascular disease? Biomarkers Med. 2010; 4: 591-600, CrossRef.
DOI: https://doi.org/10.18585/inabj.v2i3.122
Copyright (c) 2010 The Prodia Education and Research Institute

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
The Prodia Education and Research Institute