HDL: More Than Just Cholesterol
Abstract
BACKGROUND: Plasma concentration of high density lipoprotein cholesterol (HDL-C) are strongly, consistenly, and independently inversely associated with risk of atheroschlerotic cardiovascular disease (CVD). However, the last decade has seen several observations that do not follow this simple script.
CONTENT: A proteomic analysis of HDL has given us an intriguing glimpse into novel components of HDL. HDL isolated from normal humans contains several classes of proteins, including not only apolipoproteins, but also complement regulatory proteins, endopeptidase inhibitors, hemopexin, and acute phase response proteins. These observations raise the possibility of unsuspected roles for HDL. HDL delivery of complement proteins would implicate HDL in innate immunity. Serine proteinase inhibitors would enable HDL to modulate proteolysis of the vessel wall. HDL from patients with coronary artery disease was enriched in apoE, apoC-IV, apoA-IV, Paraoxonase (PON), and complement factor C3. Highlighted additional mechanisms through which HDL protects the vessel wall are: HDL improves vascular function, decreases vascular inflammation, detoxifies radicals, and limits thrombosis.
SUMMARY: Both inter- and intra-organ desynchrony may be involved in the pathogenesis of cardiometabolic disease attributable to effects in brain and multiple metabolic tissues including heart, liver, fat, muscle, pancreas, and gut. Efforts to dissect the molecular mediators that coordinate circadian, metabolic, and cardiovascular systems may ultimately lead to both improved therapeutics and preventive interventions.
KEYWORDS: HDL, Apo–A1, RCT, inflammation, HDL dysfunction, HDL proteome, HDL & Apo–A1 mimetics
Full Text:
PDFReferences
Ashen MD, Blumenthal RS. Clinical practice. Low HDL cholesterol levels. N Engl J Med. 2005; 353: 1252-60, CrossRef.
Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007; 357: 2109-22, CrossRef.
Rader DJ. Illuminating HDL–is it still a viable therapeutic target? N Engl J Med. 2007; 357: 2180-3, CrossRef.
deGoma EM, deGoma RL, Rader DJ. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol. 2008; 51: 2199-211, CrossRef.
Rothblat GH, Philips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol. 2010; 21: 229-38, CrossRef.
Tall AR. Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Internal Med. 2008; 263: 256-73, CrossRef.
Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010; 30: 139-43, CrossRef.
Tabet F, Rye KA. High-density lipoproteins, inflammation and oxidative stress. Clin Sci. 2009; 116: 87-98, CrossRef.
Nicholls SJ, Nissen SE. New targets of high-density lipoprotein therapy. Curr Opin Lipidol. 2007; 18: 421-6, CrossRef.
von Eckardstein A, Nofer J-R, Assmann G. High density lipoproteins and apolipoproteins. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2001; 21: 13-27, CrossRef.
Movva R, Rader DJ. Laboratory assessment of HDL heterogeneity and function. Clin Chem. 2008; 54: 788-800, CrossRef.
Navab M, Reddy ST, Van Lenten BJ, et al. The role of dysfunctional HDL in atherosclerosis. J Lipid Res. 2009; 50: S145-9, CrossRef.
Smith JD. Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler Thromb Vasc Biol. 2010; 30: 151-5, CrossRef.
Reilly MP, Tall AR. HDL proteomics: pot of gold or Pandora’s box? J Clin Invest. 2007; 117: 595-8, CrossRef.
Hortin GL, Shen RF, Martin BM, Remaley AT. Diverse range of small peptides associated with highdensity lipoprotein. Biochem Biophys Res Commun. 2006; 340: 909-15, CrossRef.
Scanu AM, Edelstein C. HDL: bridging past and present with a look at the future. FASEB J. 2008; 22: 4044-54, CrossRef.
Cavigiolio G, Shao B, Geier EG, Ren G, Heinecke JW, Oda MN. The interplay between size, morphology, stability, and functionally of High-density lipoprotein subclasses. Biochemistry. 2008; 47: 4770-9, CrossRef.
Nichols AV, Krauss RM, Musliner TA. Nondenaturing polyacrylamide gradient gel electrophoresis. Methods Enzymol. 1986; 128: 417-31, CrossRef.
Kunitake ST, La Sala KJ, Kane JP. Apolipoprotein A-I-containing lipoproteins with prebeta electrophoretic mobility. J Lipid Res. 1985; 26: 549-55, PMID.
Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into prebeta-migrating high-density lipoprotein. Biochemistry. 1988; 27: 25-9, CrossRef.
Skipski VP. Lipid composition of lipoproteins in normal and diseased states. In: Nelson GJ, editor. Blood lipids and lipoproteins: quantitation composition, and metabolism. New York: Wiley-Interscience; 1972. p.471-583, NLMID.
Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995; 36: 211-28, PMID.
Mulya A, Seo J, Brown AL, Gebre AK, Boudyguina E, Shelness GS, et al. Apolipoprotein M expression increases the size of nascent prebeta HDL formed by ATP binding cassette transporter A1 (ABCA1). J Lipid Res. 2010; 51: 514-24, CrossRef.
Krimbou L, Hassan HH, Blain S, Rashid S, Denis M, Marcil M, et al. Biogenesis and speciation of nascent apoA-I-containing particles in various cell lines. J Lipid Res. 2005; 46: 1668-77, CrossRef.
Lagor WR, Brown RJ, Toh SA, Millar JS, Fuki IV, de la Llera-Moya M, et al. Overexpression of Apolipoprotein F reduces HDL cholesterol levels in vivo. Arterioscler Thromb Vasc Biol. 2009; 29: 40-6, CrossRef.
Jonas A, Phillips MC. Lipoprotein structure. In: Vance DE, Vance JE, editors. Biochemistry of lipids, lipoproteins and membranes. 5th ed. Amsterdam: Elsevier; 2008. p.485-506, CrossRef.
Shen BW, Scanu AM, Kezdy FJ. Structure of human serumlipoproteins inferred from compositional analysis. Proc Natl Acad Sci USA .1977; 74: 837-41, CrossRef.
Rye KA, Barter PJ. Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2004; 24: 421-8, CrossRef.
Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res. 1999; 40: 781-96, PMID.
Chirinos JA, Zambrano JP, Chakko S, et al. Ability of serum to decrease cellular acylCoA: cholesterol acyl transferase activity predicts CV outcomes. Circulation. 2005; 112: 2446-53, CrossRef.
Matsuura F, Wang N, Chen W, Jiang XC, Tall AR. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J Clin Invest. 2006; 116: 1435-42, CrossRef.
Wang X, Rader DJ. Molecular regulation of macrophage reverse cholesterol transport. Curr Opin Cardiol. 2007; 22: 368-72, CrossRef.
Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation. 2006; 113: 2548-55, CrossRef.
Rader DJ. Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol. 2003; 92: 42J-9J, CrossRef.
Majeed F, Miller M, Kannel Wb, Dawber TR. Low high-density lipoprotein cholesterol: an important consideration in coronary heart disease risk assessment. Curr Opin Endocrinol Diabetes Obes. 2008; 15: 175-81, CrossRef.
Gordon TCW, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977; 62: 707-14, CrossRef.
Pearson H. When good cholesterol turns bad. Nature. 2006; 444: 794-5, CrossRef.
Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007; 356: 1304-16, CrossRef.
Barkowski RS, Frishman WH. HDL metabolism and CETP inhibition. Cardiol Rev. 2008; 16: 154-62, CrossRef.
Feng H, Li XA. Dysfunctional high-density lipoprotein. Curr Opin Endocrinol Diabetes Obes. 2009; 16: 156-62, CrossRef.
Navab M, Hama SY, Anantharamaiah GM, Hassan K, Hough GP, Watson AD, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res. 2000; 41: 1495-508, PMID.
Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003; 108: 2751-6, CrossRef.
Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995; 15: 1987-94, CrossRef.
Van Lenten BJ, Wagner AC, Nayak DP, Hama S, Navab M, Fogelman AM. High-density lipoprotein loses its anti-inflammatory properties during acute influenza a infection. Circulation. 2001; 103: 2283-8, CrossRef.
Castellani LW, Navab M, Van Lenten BJ, Hedrick CC, Hama Sy, Goto AM, et al. Overexpression of apolipoprotein AII in transgenic mice converts high density lipoproteins to proinflammatory particles. J Clin Invest. 1997; 100: 464-74, CrossRef.
Van Lenten BJ, Hama SY, de Beer FC, Stafforini DM, McIntyre TM, Prescott SM, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest. 1995; 96: 2758-67, CrossRef.
Cabana VG, Siegel JN, Sabesin SM. Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins. J Lipid Res. 1989; 30: 39-49, PMID.
Menschikowski M, Hagelgans A, Siegert G. Secretory phospholipase A2 of group IIA: is it an offensive or a defensive player during atherosclerosis and other inflammatory diseases? Prostaglandins Other Lipid Mediat. 2006; 79: 1-33, CrossRef.
Coetzee GA, Strachan AF, van der Westhuyzen DR, Hoppe HC, Jeenah MS, de Beer FC. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition. J Biol Chem. 1986; 261: 9644-51, PMID.
de Beer FC, de Beer MC, van der Westhuyzen DR, Castellani LW, Lusis AJ, Swanson ME, Grass DS. Secretory non-pancreatic phospholipase A2: influence on lipoprotein metabolism. J Lipid Res. 1997; 38: 2232-9, PMID.
Barter PJ. Hugh sinclair lecture: the regulation and remodelling of HDL by plasma factors. Atheroscler Suppl. 2002; 3: 39-47, CrossRef.
Rye KA, Hime NJ, Barter PJ. The influence of cholesteryl ester transfer protein on the composition, size, and structure of spherical, reconstituted high density lipoproteins. J Biol Chem. 1995; 270: 189-96, CrossRef.
Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005; 96: 1221-32, CrossRef.
Rye KA, Duong MN. Influence of phospholipid depletion on the size, structure, and remodeling of reconstituted high density lipoproteins. J Lipid Res. 2000; 41: 1640-50, PMID.
Tam SP, Ancsin JB, Tan R, Kisilevsky R. Peptides derived from serum amyloid A prevent, and reverse, aortic lipid lesions in apoE-/- mice. J Lipid Res. 2005; 46: 2091-01, CrossRef.
Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci USA. 1992; 89: 10316-20, CrossRef.
McPherson PA, Young IS, McKibben B, McEneny J. High density lipoprotein subfractions: isolation, composition, and their duplicitous role in oxidation. J Lipid Res. 2007; 48: 86-95, CrossRef.
Lowenstein CJ, Cameron SJ. High-density lipoprotein metabolism and endothelial function. Curr Opin Endocrinol Diabetes Obes. 2010; 17: 166-70, CrossRef.
Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994; 94: 437-44, CrossRef.
Bergt C, Reicher H, Malle E, Sattler W. Hypochlorite modification of high density lipoprotein: effects on cholesterol efflux from J774 macrophages. FEBS Lett. 1999; 452: 295-300, CrossRef.
Panzenboeck U, Raitmayer S, Reicher H, Lindner H, Glatter O, Malle E, et al. Effects of reagent and enzymatically generated hypochlorite on physicochemical and metabolic properties of high density lipoproteins. J Biol Chem. 1997; 272: 29711-20, CrossRef.
Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004; 114: 529-41, CrossRef.
Bergt C, Pennathur S, Fu X, et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci USA. 2004; 101: 13032-7, CrossRef.
Pennathur S, Bergt C, Shao B, Byun J, Kassim SY, Singh P, et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J Biol Chem. 2004; 279: 42977-83, CrossRef.
Zheng L, Settle M, Brubaker G, Schmitt D, Hazen SL, Smith JD, et al. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem. 2005; 280: 38-47, CrossRef.
Shao B, Bergt C, Fu X, et al. Tyrosine 192 in apolipoprotein A-I Is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J Biol Chem. 2005; 280: 5983-93, CrossRef.
Bergt C, Fu X, Huq NP, Kao J, Heinecke JW. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J Biol Chem. 2004; 279: 7856-66, CrossRef.
Peng DQ, Brubaker G, Wu Z, Green P, Voss JC, Oda MN, et al. Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler Thromb Vasc Biol. 2008; 28: 2063-70, CrossRef.
McGillicuddy FC, de la Llera Moya M, Hinkle CC, et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation 2009; 119: 1135-45, CrossRef.
Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005; 352: 1685-95, CrossRef.
Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007; 7: 678-89, CrossRef.
Libby P, Geng YJ, Aikawa M, Schoenbeck U, Mach F, Clinton SK, et al. Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol. 1996; 7: 330-5, CrossRef.
Tabas I. Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 2004; 11 (Suppl 1): S12-6, CrossRef.
Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol. 2005; 25: 2255-64, CrossRef.
Wang J, Sun F, Zhang DW, Ma Y, Xu F, Belani JD, et al. Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution. J Biol Chem. 2006; 281: 27894-904, CrossRef.
Terasaka N, Wang N, Yvan-Charvet L, Tall AR. HDL protects macrophages from oxidized LDL-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci USA. 2007; 104: 15093-8, CrossRef.
O’Connell BJ, Denis M, Genest J. Cellular physiology of cholesterol efflux in vascular endothelial cells. Circulation. 2004; 110: 2881-8, CrossRef.
Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998; 97: 1129-35, CrossRef.
Gerbod-Giannone MC, Li Y, Holleboom A, Han S, Hsu LC, Tabas I, et al. TNFα induces ABCA1 through NF-kappaB in macrophages and in phagocytes ingesting apoptotic cells. Proc Natl Acad Sci USA. 2006; 103: 3112-7, CrossRef.
Cui D, Thorp E, Li Y, Wang N, Yvan-Charvet L, Tall AR, et al. Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J Leukoc Biol. 2007; 82: 1040-50, CrossRef.
Flegel WA, Baumstark MW, Weinstock C, Berg A, Northoff H. Prevention of endotoxin-induced monokine release by human low-and high-density lipoproteins and by apolipoprotein A-I. Infect Immun. 1993; 61: 5140-6, PMID.
Parker TS, Levine DM, Chang JC, Laxer J, Coffin CC, Rubin AL. Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood. Infect Immun. 1995; 63: 253-8, PMID.
Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005; 17: 1-14, CrossRef.
Moudry R, Spycher MO, Doran JE. Reconstituted high density lipoprotein modulates adherence of polymorphonuclear leukocytes to human endothelial cells. Shock. 1997; 7: 175-81, CrossRef.
Forte TM, Oda MN, Knoff L, Frei B, Suh J, Harmony JA, et al. Targeted disruption of the murine lecithin:cholesterol acyltransferase gene is associated with reductions in plasma paraoxonase and platelet-activating factor acetylhydrolase activities but not in apolipoprotein J concentration. J Lipid Res. 1999; 40: 1276-83, PMID.
Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST. The paraoxonase gene family and atherosclerosis. Free Radical Biol Med. 2005; 38: 153-63, CrossRef.
Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004; 84: 1381-78, CrossRef.
Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004; 45: 993-1007, CrossRef.
Garner B, Waldeck AR, Witting PK, Rye KA, Stocker R. Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem. 1998; 273: 6088-95, CrossRef.
Panzenbock U, Stocker R. Formation of methionine sulfoxide-containing specific forms of oxidized high-density lipoproteins. Biochim Biophys Acta. 2005; 1703: 171-81, CrossRef.
Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet. 1996; 14: 55-61, CrossRef.
Thorngate FE, Rudel LL, Walzem RL, Williams DL. Low levels of extrahepatic nonmacrophage ApoE inhibit atherosclerosis without correcting hypercholesterolemia in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2000; 20: 1939-45, CrossRef.
Tangirala RK, Pratico D, FitzGerald GA, Chun S, Tsukamoto K, Maugeais C, et al. Reduction of isoprostanes and regression of advanced atherosclerosis by apolipoprotein E. J Biol Chem. 2001; 276: 261-6, CrossRef.
Raffai RL, Loeb SM, Weisgraber KH. Apolipoprotein E promotes the regression of atherosclerosis independently of lowering plasma cholesterol levels. Arterioscler Thromb Vasc Biol. 2005; 25: 436-41, CrossRef.
Jordan-Starck TC, Witte DP, Aronow BJ, Harmony JA. Apolipoprotein J: a membrane policeman? Curr Opin Lipidol. 1992; 1992: 75-85, CrossRef.
Boisfer E, Stengel D, Pastier D, Laplaud PM, Dousset N, Ninio E, et al. Antioxidant properties of HDL in transgenic mice overexpressing human apolipoprotein A-II. J Lipid Res 2002; 43: 732-41, PMID.
Ribas V, Sanchez-Quesada JL, Anton R, Camacho M, Julve J, Escolà-Gil JC, et al. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res. 2004; 95: 789-97, CrossRef.
Kontush A, Chapman MJ. Antiatherogenic small, dense HDL-guardian angel of the arterial wall? Nat Clin Pract Cardiovasc Med. 2006; 3: 144-53, CrossRef.
Kontush A, Chapman MJ. Functionally defective HDL: a new therapeutic target at the crossroads of dyslipidemia, inflammation and atherosclerosis. Pharmacol Rev. 2006; 3: 342-74, CrossRef.
Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2001; 21:473-80, CrossRef.
Christison JK, Rye KA, Stocker R. Exchange of oxidized cholesteryl linoleate between LDL and HDL mediated by cholesteryl ester transfer protein. J Lipid Res. 1995; 36: 2017-26, PMID.
Girotti AW. Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radic Biol Med. 2008; 44: 956-68, CrossRef.
Zerrad-Saadi A, Therond P, Chantepie S, Couturier M, Rye KA, Chapman MJ, et al. HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler Thromb Vasc Biol. 2009; 29: 2169-75, CrossRef.
Proudfoot JM, Barden AE, Loke WM, Croft KD, Puddey IB, Mori TA, et al. HDL is the major lipoprotein carrier of plasma F2-isoprostanes. J Lipid Res. 2009; 50: 716-22, CrossRef.
Davidson WS, Silva RA, Chantepie S, Lagor WR, Chapman MJ, Kontush A, et al. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function. Arterioscler Thromb Vasc Biol. 2009; 29: 870-6, CrossRef.
Kontush A, Therond P, Zerrad A, Couturier M, Négre-Salvayre A, de Souza JA, et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol. 2007; 27: 1843-9, CrossRef.
Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol. 2003; 23: 1881-8, CrossRef.
De Souza JA, Vindis C, Negre-Salvayre A, Rye KA, Couturier M, Therond P, et al. Small, dense HDL3 particles attenuate apoptosis in endothelial cells: pivotal role of apolipoprotein A-I. J Cell Mol Med. 2010; 14: 608-20, CrossRef.
Robins SJ, Collins D, Wittes JT, Papademetriou V, Deedwania PC, Schaefer EJ, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA. 2001; 285: 1585-91, CrossRef.
Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, et al. Oral D-4F causes formation of prebeta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation. 2004; 109: 3215-20, CrossRef.
Van Lenten BJ, Navab M, Shih D, Fogelman AM, Lusis AJ. The role of high-density lipoproteins in oxidation and inflammation. Trends Cardiovasc Med. 2001; 11: 155-61, CrossRef.
Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010; 21: 312-8, CrossRef.
Skajaa T, Cormode DP, Falk E, Mulder WJM, Fisher EA, Fayad ZA. High-density lipoprotein-based contrast agents fpr multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol. 2010; 30: 169-76, CrossRef.
Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, et al. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem. 1996; 271: 6518-22, CrossRef.
Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA. 1996; 93: 6448-53, CrossRef.
Chang WJ, Rothberg KG, Kamen BA, Anderson RG. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol. 1992; 118: 63-9, CrossRef.
Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999; 274: 32512-9, CrossRef.
Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem. 2000; 275: 11278-83, CrossRef.
Kincer JF, Uittenbogaard A, Dressman J, Guerin TM, Febbraio M, Guo L, et al. Hypercholesterolemia promotes a CD36-dependent and endothelial nitric-oxide synthase-mediated vascular dysfunction. J Biol Chem. 2002; 277: 23525-33, CrossRef.
Yeh M, Cole AL, Choi J, Liu Y, Tulchinsky D, Qiao JH, et al. Role for sterol regulatory element-binding protein in activation of endothelial cells by phospholipid oxidation products. Circ Res. 2004; 95: 780-8, CrossRef.
Gharavi NM, Baker NA, Mouillesseaux KP, Yeung W, Honda HM, Hsieh X, et al. Role of endothelial nitric oxide synthase in the regulation of SREBP activation by oxidized phsopholipids. Circ Res. 2006; 98: 768-76, CrossRef.
Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res. 2006; 98: 1352-64, CrossRef.
Li D, Yang B, Mehta JL. Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2, and Fas. Am J Physiol. 1998; 275: H568-76, PMID.
Choy JC, Granville DJ, Hunt DW, McManus BM. Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol. 2001; 33: 1673-90, CrossRef.
Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med. 1999; 189: 1815-22, CrossRef.
Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998; 338: 1042-50, CrossRef.
Strawn WB, Ferrario CM. Mechanisms linking angiotensin II and atherogenesis. Curr Opin Lipidol. 2002; 13: 505-12, CrossRef.
Li XA, Guo L, Dressman JL, Asmis R, Smart EJ. A novel ligand-independent apoptotic pathway induced by scavenger receptor class B, type I and suppressed by endothelial nitric-oxide synthase and high density lipoprotein. J Biol Chem. 2005; 280: 19087-96, CrossRef.
Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005; 85: 9-23, CrossRef.
Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362: 801-9, CrossRef.
Gotlieb AI, Schoen FJ, Silver MD, editors. Cardiovascular Pathology. 3rd ed. New York: Churchill Livingstone; 2001, NLMID.
Niimi Y, Azuma H, Hirakawa K. Repeated endothelial removal augments intimal thickening and attenuates EDRF release. Am J Physiol. 1994; 266: H1348-56, PMID.
Rossig L, Dimmeler S, Zeiher AM. Apoptosis in the vascular wall and atherosclerosis. Basic Res Cardiol. 2001; 96: 11-22, CrossRef.
Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 2003; 93: e17-24. CrossRef.
Shah PK, Kaul S, Nilsson J, Cercek B. Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming. Part II. Circulation. 2001; 104: 2498-502, CrossRef.
Assmann G, Nofer JR. Atheroprotective effects of high-density lipoproteins. Annu Rev Med. 2003; 54: 321-41, CrossRef.
Durand E, Scoazec A, Lafont A, Boddaert J, Al Hajzen A, Addad F, et al. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation. 2004; 109: 2503-6, CrossRef.
Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004; 95: 764-72, CrossRef.
Vane JR, Botting RM. Pharmacodynamic profile of prostacyclin. Am J Cardiol. 1995; 75: 3A-10A, CrossRef.
Fleisher LN, Tall AR, Witte LD, Miller RW, Cannon PJ. Stimulation of arterial endothelial cell prostacyclin synthesis by high density lipoproteins. J Biol Chem. 1982; 257: 6653-5, PMID.
Spector AA, Scanu AM, Kaduce TL, Figard PH, Fless GM, Czervionke RL. Effect of human plasma lipoproteins on prostacyclin production by cultured endothelial cells. J Lipid Res. 1985; 26: 288-97, PMID.
Pomerantz KB, Fleisher LN, Tall AR, Cannon PJ. Enrichment of endothelial cell arachidonate by lipid transfer from high density lipoproteins: relationship to prostaglandin I2 synthesis. J Lipid Res. 1985; 26: 1269-76, PMID.
Myers DE, Huang WN, Larkins RG. Lipoprotein-induced prostacyclin production in endothelial cells and effects of lipoprotein modification. Am J Physiol. 1996; 271: C1504-11, PMID.
Cockerill GW, Saklatvala J, Ridley SH, Yarwood H, Miller NE, Oral B, et al. High-density lipoproteins differentially modulate cytokine-induced expression of E-selectin and cyclooxygenase-2. Arterioscler Thromb Vasc Biol. 1999; 19: 910-7, CrossRef.
Norata GD, Callegari E, Inoue H, Catapano AL. HDL3 induces cyclooxygenase-2 expression and prostacyclin release in human endothelial cells via a p38 MAPK/CRE-dependent pathway: effects on COX-2/PGIsynthase coupling. Arterioscler Thromb Vasc Biol. 2004; 24: 871-7, CrossRef.
Vinals M, Martinez-Gonzalez J, Badimon JJ, Badimon L. HDL-induced prostacyclin release in smooth muscle cells is dependent on cyclooxygenase-2 (Cox-2). Arterioscler Thromb Vasc Biol. 1997; 17: 3481-8, CrossRef.
Escudero I, Martinez-Gonzalez J, Alonso R, Mata P, Badimon L. Experimental and interventional dietary study in humans on the role of HDL fatty acid composition in PGI2 release and Cox-2 expression by VSMC. Eur J Clin Invest. 2003; 33: 779-86, CrossRef.
Martinez-Gonzalez J, Escudero I, Badimon L. Simvastatin potenciates PGI(2) release induced by HDL in human VSMC: effect on Cox-2 up-regulation and MAPK signalling pathways activated by HDL. Atherosclerosis. 2004; 174: 305-13, CrossRef.
O’Connell BJ, Genest J Jr. High-density lipoproteins and endothelial function. Circulation. 2001; 104: 1978-83, CrossRef.
Eren M, Painter CA, Atkinson JB, Declerck PJ, Vaughan DE. Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation. 2002; 106: 491-6, CrossRef.
Ridker PM, Brown NJ, Vaughan DE, Harrison DG, Mehta JL. Established and emerging plasma biomarkers in the prediction of first atherothrombotic events. Circulation. 2004; 109 (Suppl IV): IV6-19, CrossRef.
Norata GD, Banfi C, Pirillo A, Tremoli E, Hamsten A, Catapano AL, et al. Oxidised-HDL3 induces the expression of PAI-1 in human endothelial cells. Role of p38MAPK activation and mRNA stabilization. Br J Haematol. 2004; 127: 97-104, CrossRef.
Naqvi TZ, Shah PK, Ivey PA, Met alolloy MD, Thomas AM, Panicker S, at al. Evidence that high-density lipoprotein cholesterol is an independent predictor of acute platelet-dependent thrombus formation. Am J Cardiol. 1999; 84: 1011-7, CrossRef.
Lerch PG, Spycher MO, Doran JE. Reconstituted high density lipoprotein (rHDL) modulates platelet activity in vitro and ex vivo. Thromb Haemost. 1998; 80: 316-20, PMID.
Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003; 290: 2292-300, CrossRef.
Cuchel M, Rader DJ. Genetics of increased HDL cholesterol levels: insights into the relationship between HDL metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol. 2003; 23: 1710-2, CrossRef.
Trigatti BL. Hepatic high-density lipoprotein receptors: roles in lipoprotein metabolism and potential for therapeutic modulation. Curr Atheroscler Rep. 2005; 7: 344-50, CrossRef.
Vaisar T, Pennatur S, Green P, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007; 117: 746-56, CrossRef.
Rezaee F, Casetta B, Levels JH, Speijer D, Meijers JC. Proteomic analysis of high-density lipoprotein. Proteomics. 2006; 6: 721-30, CrossRef.
Heller M, Stalder D, Schlappritzi E, Hayn G, Matter U, Haeberli A. Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins. Proteomics. 2005; 5: 2619-30, CrossRef.
Karlsson H, Leanderson P, Tagesson C, Lindahl M. Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 2005; 5: 1431-45, CrossRef.
Heinecke JW. The HDL proteome: a marker – and perhaps mediator – of coronary artery disease. J Lipid Res. 2009: S167-71, CrossRef.
Shiflett AM, Bishop JR, Pahwa A, Hajduk SL. Human high density lipoproteins are platforms for assembly of multi-component innate immune complexes. J Biol Chem. 2005; 280: 32578-85, CrossRef.
Libby P. The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med. 2008; 263: 517-27, CrossRef.
Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004; 76: 4193-201, CrossRef.
Fu X, Gharib SA, Green PS, Aitken ML, Frazer DA, Park DR, et al. Spectral index for assessment of differential protein expression in shotgun proteomics. J Proteome Res. 2008; 7: 845-54, CrossRef.
Vergnes L, Baroukh N, Ostos MA, Castro G, Duverger N, Nanjee MN, et al. Expression of human apolipoprotein A-I/C-III/A-IV gene cluster in mice induces hyperlipidemia but reduces atherogenesis. Arterioscler Thromb Vasc Biol. 2000; 20: 2267-74, CrossRef.
Strunk RC, Kunke KS, Giclas PC. Human peripheral blood monocyte-derived macrophages produce haemolytically active C3 in vitro. Immunology. 1983; 49: 169-74, PMID.
Rader DJ, Puré E. Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab. 2005; 1: 223-30, CrossRef.
Davidsson P, Hulthe J, Fagerberg B, Camejo G. Proteomics of apolipoprotein and associated proteins from plasma high-density lipoprotein. Arterioscler Thromb Vasc Biol. 2010; 30: 156-63, CrossRef.
Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest. 1967; 46: 1954-62, CrossRef.
Kahn SE, Zraika S, Utzschneider KM, Hull RL. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia. 2009; 52: 1003-12, CrossRef.
Adiels M, Olofsson SO, Taskinen MR, Bore´n J. Diabetic dyslipidaemia. Curr Opin Lipidol. 2006; 17: 238-46, CrossRef.
von Eckardstein A, Schulte H, Assmann G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Münster. J Clin Endocrinol Metab. 2000; 85: 3101-8, CrossRef.
Kendall DM. The dyslipidemia of diabetes mellitus: giving triglycerides and high-density lipoprotein cholesterol a higher priority? Endocrinol Metab Clin North Am. 2005; 34: 27-48, CrossRef.
Tenenbaum A, Motro M, Fisman EZ, Schwammenthal E, Adler Y, Goldenberg I, et al. Peroxisome proliferator-activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease. Circulation. 2004; 109: 2197-202, CrossRef.
Kontush A, Chapman MJ. Why is HDL functionally deficient in type 2 diabetes? Curr Diab Rep. 2008; 8: 51-9, CrossRef.
Brites FD, Cavallero E, de Geitere C, Nicolaïew N, Jacotot B, Rosseneu M, et al. Abnormal capacity to induce cholesterol efflux and a new LpA-I prebeta particle in type 2 diabetic patients. Clin Chim Acta. 1999; 279: 1-14, CrossRef.
Syvänne M, Castro G, Dengremont C, De Geitere C, Jauhiainen M, Ehnholm C, et al. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and noninsulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis. 1996; 127: 245-53, CrossRef.
Nobécourt E, Jacqueminet S, Hansel B, Chantepie S, Grimaldi A, Chapman MJ, et al. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia. 2005; 48: 529-38, CrossRef.
de Souza JA, Vindis C, Hansel B, Nègre-Salvayre A, Therond P, Serrano CV Jr, et al. Metabolic syndrome features small, apolipoprotein A-I-poor, triglyceride-rich HDL3 particles with defective antiapoptotic activity. Atherosclerosis. 2008; 197: 84-94, CrossRef.
Getz GS, Reardom CA. High-density lipoprotein function in regulating insulin secretion: possible relevance to metabolic syndrome. Arterioscler Thromb Vasc Biol. 2010; 30: 1497-9, CrossRef.
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997; 89: 331-40, CrossRef.
Le Lay S, Krief S, Farnier C, Lefrère I, Le Liepvre X, Bazin R, et al. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. J Biol Chem. 2001; 276: 16904-10, CrossRef.
Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion. A novel mechanism for pancreatic β-cell dysfunction. Diabetes. 2007; 56: 2328-38, CrossRef.
Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009; 119: 2103-11, CrossRef.
Brunham LR, Kruit JK, Pape TD, Timmins JM, Reuwer AQ, Vasanji Z, et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med. 2007; 13: 340-7, CrossRef.
Roehrich ME, Mooser V, Lenain V, Herz J, Nimpf J, Azhar S, et al. Insulin-secreting beta-cell dysfunction induced by human lipoproteins. J Biol Chem. 2003; 278: 18368-75, CrossRef.
Abderrahmani A, Niederhauser G, Favre D, Abdelli S, Ferdaoussi M, Yang JY, et al. Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia. 2007; 50: 1304 -14, CrossRef.
Rutti S, Ehses JA, Sibler RA, Prazak R, Rohrer L, Georgopoulos S, et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology. 2009; 150: 4521-30, CrossRef.
Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, et al. Effects of high-density lipoproteins on pancreatic β-cell insulin secretion. Arterioscler Thromb Vasc Biol. 2010; 30: 1642-8, CrossRef.
Vergeer M, Brunham LR, Koetsveld J, Kruit JK, Verchere CB, Kastelein JJP, et al. Carriers of loss-of-function mutations in ABCA1 display pancreatic β-cell dysfunction. Dian Care. 2010; 33: 869-74, CrossRef.
Shao B, Pennathur S, Pagani I, Oda MN, Witztum JL, Oram JF, et al. Dysfunctional HDL: modifying apolipoprotein A-I. by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the abca1 pathway. J Biol Chem. 2010; 285: 18473-84, CrossRef.
Passarelli M, Tang C, McDonald TO, O'Brien KD, Gerrity RG, Heinecke JW, et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes. 2005; 54: 2198 -205, CrossRef.
Kruit JK, Brunham LR, Verchere CN, Hayden MR. HDL and LDL cholesterol significantly influence β-cell function in type 2 diabetes mellitus. Curr Opin Lipidol. 2010; 21: 178-85, CrossRef.
Walter M. Interrelationships among HDL metabolism, aging, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2009; 29: 1244-50, CrossRef.
Ben-Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J Clin Invest. 2004; 113: 8-13, CrossRef.
Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA. 1995; 92: 11190-4, CrossRef.
Kuro-o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008; 389: 233-41, CrossRef.
Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF, et al. KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet. 2003; 72: 1154-61, CrossRef.
Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res. 2005; 96: 412-8, CrossRef.
Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis. 2002; 161: 1-16, CrossRef.
McCallum CD, Epand R. Insulin receptor autophosphorylation and signaling is altered by modulation of membrane physical properties. Biochemistry. 1995; 34: 1815-24, CrossRef.
Unger RH. Klotho-induced insulin resistance: a blessing in disguise? Nat Med. 2006; 12: 56-7, CrossRef.
Yvan-Charvet L, Pagler T, Gautier EL. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010; 25; 328: 1689-93, CrossRef.
Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010; 327: 46-50, CrossRef.
Giebel B, Corbeil D, Beckmann J, Höhn J, Freund D, Giesen K, et al. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood. 2004; 104: 2332-8, CrossRef.
Vitols S, Björkholm B, Gahrton G, Peterson C. Hypocholestherolaemia in malignancy due to elevated low-density lipoprotein-receptor activity in tumour cells: evidence from studies in patients with leukaemia. Lancet. 1985; 326: 1150-4, CrossRef.
Peeters SD, van der Kolk DM, de Haan G. Selective expression of cholesterol metabolism genes in normal CD34+CD38- cells with a heterogeneous expression pattern in AML cells. Exp Hematol. 2006; 34: 622-30, CrossRef.
Feldman DL, Mogelesky TC, Liptak BF, Gerrity RG. Leukocytosis in rabbits with diet-induced atherosclerosis. Arterioscler Thromb. 1991; 11: 985-94, CrossRef.
Hannson GK, Björkholm M. Tackling two diseases with HDL. Science. 2010; 328: 1641-2, CrossRef.
Navab M, Anantharamaiah GM, Beddy ST, Van Lenten BJ, Fogelman AM. HDL as a biomarker, potential therapeutic target, and therapy. Diabetes. 2009; 58: 2711-7, CrossRef.
Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ. 2009; 338: b92, CrossRef.
Singh IM, Shishehbor MH, Ansell BJ. High-density lipoprotein as a therapeutic target: a systematic review. JAMA. 2007; 298:786-98, CrossRef.
Van Lenten BJ, Navab M, Anantharamaiah GM, Buga GM, Reddy ST, Fogelman AM. Multiple indications for anti-inflammatory apolipoprotein mimetic peptides. Curr Opin Investig Drugs. 2008; 9: 1157-62, PMID.
Navab M, Shechter I, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Fogelman AM. Structure and function of HDL mimetics. Arterioscler Thromb Vasc Biol. 2010; 30: 164-8, CrossRef.
Mendez AJ. The promise of apolipoprotein A-1 mimetics. Curr Opin Endocrinol Diabetes Obes. 2010; 17: 171-6, CrossRef.
Navab M, Anantharamaiah GM, Hama S, Hough G, Reddy ST, Frank JS, et al. D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2005; 25: 1426-32, CrossRef.
Van Lenten BJ, Wagner AC, Navab M, Anantharamaiah GM, Hui EK, Nayak DP, et al. D-4F, an apolipoprotein A-I mimetic peptide, inhibits the inflammatory response induced by influenza A infection of human type II pneumocytes. Circulation. 2004; 110: 3252-8, CrossRef.
Navab M, Anantharamaiah GM, Hama S, Garber DW, Chaddha M, Hough G, et al. Oral administration of an Apo A-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation. 2002; 105: 290-2, CrossRef.
Garber DW, Datta G, Chaddha M, Palgunachari MN, Hama SY, Navab M, et al. A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J Lipid Res. 2001; 42: 545-52, PMID.
Bloedon LT, Dunbar R, Duffy D, Pinell-Salles P, Norris R, DeGroot BJ, et al. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J Lipid Res. 2008; 49: 1344-52, CrossRef.
Navab M, Ruchala P, Waring AJ, Lehrer RI, Hama S, Hough G, et al. A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids. J Lipid Res. 2009; 50: 1538-47, CrossRef.
D’Souza W, Stonik JA, Murphy A, Demosky SJ, Sethi AA, Moore XL, et al. Structure/function relationships of apolipoproein A-1 mimetic peptides. Circ Res. 2010; 107: 217-27, CrossRef.
Larrede S, Quinn CM, Jessup W, Frisdal E, Olivier M, Hsieh V, et al. Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent. Arterioscler Thromb Vasc Biol 2009; 29: 1930-6, CrossRef.
Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA. 2002; 99: 7604-9, CrossRef.
Levin N, Bischoff ED, Daige CL, Thomas D, Vu CT, Heyman RA, et al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol. 2005; 25: 135-42, CrossRef.
Cignarella A, Engel T, von Eckardstein A, Kratz M, Lorkowski S, Lueken A, et al. Pharmacological regulation of cholesterol efflux in human monocyte-derived macrophages in the absence of exogenous cholesterol acceptors. Atherosclerosis. 2005; 179: 229-36, CrossRef.
Burke MF, Khera AV, Rader DJ. Polyphenols and cholesterol efflux. Is coffee the next red wine? Circ Res. 2010; 106: 627-9, CrossRef.
Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000; 8S (Suppl): 2073S-85S, PMID.
Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005; 1 (Suppl): 230S-42S, PMID.
Manach C, Mazur A, Scalbert A. Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol. 2005; 16: 77-84, CrossRef.
Sevov M, Elfineh L, Cavelier LB. Resveratrol regulates the expression of LXR-alpha in human macrophages. Biochem Biophys Res Commun. 2006; 348: 1047-54, CrossRef.
Berrougui H, Grenier G, Loued S, Drouin G, Khalil A. A new insight into resveratrol as an atheroprotective compound: inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atherosclerosis. 2009; 207: 420-7, CrossRef.
Xia M, Hou M, Zhu H, Ma J, Tang Z, Wang Q, et al Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferatoractivated receptor {gamma}-liver X receptor {alpha}-ABCA1 pathway. J Biol Chem. 2005; 280: 36792-801, CrossRef.
Uto-Kondo H, Ayaori M, Ogura M, Nakaya K, Ito M, Suzuki A, et al. Coffee consumption enhances high-density lipoprotein–mediated cholesterol efflux in macrophages. Circ Res. 2010; 106: 779-87, CrossRef.
Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr. 2007; 137: 2196-201, PMID.
DOI: https://doi.org/10.18585/inabj.v2i3.123
Copyright (c) 2010 The Prodia Education and Research Institute
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
The Prodia Education and Research Institute