MicroRNAs in Obesity, Metabolic Syndrome and Diabetes Mellitus

Anna Meiliana, Andi Wijaya


BACKGROUND: MicroRNAs (miRNAs) are small regulatory RNAs that play important roles in development of diseases. Several studies have provided evidences showing that miRNAs affect pathways that are fundamental for metabolic control in adipocyte and skeletal muscle differentiations. Some miRNAs have been implicated in lipid, amino acid, and glucose homeostasis. This leads to the possibility that miRNAs may contribute to common metabolic diseases and point to novel therapeutic opportunities based on targeting of miRNAs.

CONTENT: miRNAs have been recognized as a class of epigenetic regulators of metabolism and energy homeostasis, primarily because the simultaneous regulation of a large number of target genes can be accomplished by a single miRNA. Emerging evidences suggest that miRNAs play a key role in the pathological development of obesity by affecting adipocyte differentiation. miRNAs have been implicated as novel protagonists in the pathogenesis of Diabetes Mellitus (DM), regulation of insulin production, secretion and action. They also appear to play a role in the development of diabetic complications such as nephropathy and cardiac hypertrophy.

SUMMARY: Involvement of miRNAs in glucose and lipid metabolism has provided strong evidences to confirm their roles as key players in regulation of complex metabolic pathways. Additionally, it indicates potential outlook for novel therapeutic strategies in the management of obesity, metabolic syndrome and DM. Further research in this field is needed to ascertain the full potential of miRNAs as novel metabolic biomarkers and potent therapeutic agents against obesity and its metabolic disorders.

KEYWORDS: obesity, metabolic syndrome, diabetes, miRNAs, adipogenesis, insulin, pancreatic cells

Full Text:



Bouzin J. MicroRNAs make big impression in disease after disease. Science. 2008; 319: 1782-4, CrossRef.

Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003; 113: 673-6, CrossRef.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281-97, CrossRef.

Lai EC. microRNAs: runts of the genome assert themselves. Curr Biol. 2003; 13: R925-36, CrossRef.

McManus MT. MicroRNAs and cancer. Semin Cancer Biol. 2003; 13: 253-8, CrossRef.

Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003; 301: 336-8, CrossRef.

Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003; 426: 845-9, CrossRef.

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004; 5: 522-31, CrossRef.

Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 2004; 32: D109-11, CrossRef.

Heneghan HM, Miller N, Kerin MJ. Role of microRNA in obesity and the metabolic syndrome. Obes Rev. 2010; 11: 354-61, CrossRef.

Hannon GJ. RNA interference. Nature. 2002; 418: 244-51, CrossRef.

Elbashir SM, Harborth J, Lendecke W, Yalcin A, Weber K, Tusch T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001; 411: 494-8, PMID.

Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001; 15: 188-200, CrossRef.

Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002; 21: 4663-70, CrossRef.

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425: 415-9, CrossRef.

Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNAinterference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001; 293: 834-8, CrossRef.

Lund, E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004; 303: 95-8, CrossRef.

Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001; 106: 23-34, CrossRef.

Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001; 15: 2654-9, CrossRef.

Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Rolefor a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001; 409: 363-6, CrossRef.

Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003; 115: 199-208, CrossRef.

Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003; 115: 209-16, CrossRef.

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003; 115: 787-98, CrossRef.

Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA. 2007; 13: 1894-910, CrossRef.

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007; 27: 91-105, CrossRef.

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433: 769-73, CrossRef.

Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005; 438: 685-9, CrossRef.

Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006; 312: 75-9, CrossRef.

Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 2007; 4: 76-84, CrossRef.

Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA. 2007; 13: 1198-204, CrossRef.

Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, Mandel G, et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA. 2007; 104: 19291-6, CrossRef.

Zhang L, Ding L, Cheung TH, Dong MQ, Chen J, Sewell AK, et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell. 2007; 28: 598-613, CrossRef.

Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008; 455: 64-71, CrossRef.

Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008; 455: 58-63, CrossRef.

Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of mir-27 in the regulation of adipogenesis. Febs J. 2008; 276: 2348-58, CrossRef.

Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. Plos One. 2008; 3: e3148, CrossRef.

Carleton M, Cleary MA, Linsley PS. MicroRNAs and cell cycle regulation. Cell Cycle. 2007; 6: 2127-32, CrossRef.

Bueno MJ, de Castro IP, Malumbres M. Control of cell proliferation pathways by microRNAs. Cell Cycle. 2008; 7: 3143-8, CrossRef.

Schickel R, Boyerinas B, Park SM, Peter ME. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008; 27: 5959-74, CrossRef.

Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene. 2006; 25: 6176-87, CrossRef.

Schratt G. microRNAs at the synapse. Nat Rev Neurosci. 2009; 10: 842-9, CrossRef.

Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009; 136: 26-36, CrossRef.

Liu N, Olson EN. MicroRNA regulatory networks in cardiovascular development. Dev Cell. 2010; 18: 510-25, CrossRef.

Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009; 60: 167-79, CrossRef.

Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010; 121: 1022-32, CrossRef.

Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol. 2009; 6: 418-29, CrossRef.

Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005; 122: 553-63, CrossRef.

Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liverspecific microRNA. Science. 2005; 309: 1577-81, CrossRef.

Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA. 2007; 104: 12884-9, CrossRef.

Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008; 452: 896-900, CrossRef.

Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005; 102: 3627-32, CrossRef.

Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosom Cancer. 2004; 39: 167-9, CrossRef.

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005; 435: 828-33, CrossRef.

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005; 435: 834-8, CrossRef.

Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005; 436: 214-20, CrossRef.

Chen CZ, Lodish HF. MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol. 2005; 17: 155-65, CrossRef.

Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005; 33: 1290-7, CrossRef.

Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A Pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004; 432: 226-30, CrossRef.

Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liverspecific microRNA. Science. 2005; 309: 1577-80, CrossRef.

Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Therapy. 2006; 13: 496-502, CrossRef.

Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003; 13: 790-5, CrossRef.

Gauthier BR, Wollheim CB. MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat Med. 2006; 12: 36-8, CrossRef.

He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol. 2007; 21: 2785-94, CrossRef.

Poy MN, Spranger M, Stoffel M. MicroRNas and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 2007; 9: 67-73, CrossRef.

Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nature Genet. 2005; 37: 495-500, CrossRef.

Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA. 2009; 15: 287-93, CrossRef.

Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006; 3: 87-98, CrossRef.

Baralle M, Baralle FE. Genetics and molecular biology: micro RNAs are welcome to the lipid field. Curr Opin Lipidol. 2007; 18: 375-7, CrossRef.

Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010; 328: 1566-73, CrossRef.

Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002; 109: 1125-31, CrossRef.

Attie AD. ABCA1: at the nexus of cholesterol, HDL and atherosclerosis. Trends Biochem Sci. 2007 ; 32: 172-9, CrossRef.

Reaven GM. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab. 2005; 1: 9-14, CrossRef.

Brown MS, Ye J, Goldstein JL. HDL miR-ed down by SREBP introns. Science. 2010; 328: 1495-6, CrossRef.

Krützfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab. 2006; 4: 9-12, CrossRef.

Kopelman P. Obesity as a medical problem. Nature. 2000; 404: 635-43, PMID.

Klaus S. Adipose tissue as a regulator of energy balance. Curr Drug Targets. 2004; 5: 241-50, CrossRef.

Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007; 21: 1443-55, CrossRef.

Trayhurn P, Wang B & Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr. 2008; 100: 227-35, CrossRef.

Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000; 16: 145-71, CrossRef.

Rangwala SM, Lazar MA. Transcriptional control of adipogenesis. Annu Rev Nutr. 2000; 20: 535-59, CrossRef.

Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000; 130: 3122S-6S, PMID.

Pang C, Gao Z, Yin J, Zhang J, Jia W & Ye J. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab. 2008; 295: E313-22, CrossRef.

Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007; 293: E1118-28, CrossRef.

Lin Q, Lee YJ, Yun Z. Differentiation arrest by hypoxia. J Biol Chem. 2007; 281: 30678-83, CrossRef.

Yun Z, Maecker HL, Johnson RS, Giaccia AJ. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell. 2002; 2: 331-41, CrossRef.

Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun. 2008; 376: 728-32, CrossRef.

Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE. 2009; 4: e4699, CrossRef.

Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, Li X. MiR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA. 2008; 105: 2889-94, CrossRef.

Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are down regulated in obesity. Diabetes. 2009; 58: 1050-7, CrossRef.

Schäffler A, Müller-Ladner U, Schölmerich J, Büchler C. Role of adipose tissue as an inflammatory organ in human diseases. Endocr Rev. 2006; 27: 449-67, CrossRef.

Schwartz MW, Porte D Jr. Diabetes, obesity and the brain. Science. 2005; 307: 375-9, CrossRef.

Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001; 2: 599-609, CrossRef.

Cao L, Lin EJ, Cahill MC, Wang C, Liu X, During MJ. Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nat Med. 2009; 15: 447-54, CrossRef.

Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS, et al. Brain-derived neurotrophic factor and obesity in theWAGRsyndrome. N Engl J Med. 2008; 359: 918-27, CrossRef.

Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004; 53 (Suppl 3): S16-21, CrossRef.

Tillmar L, Carlsson C, Welsh N. Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3'-untranslated region pyrimidine-rich sequence. J Biol Chem. 2002; 277: 1099-106, CrossRef.

Knoch KP, Bergert H, Borgonovo B, Saeger HD, Altkrüger A, Verkade P, et al. Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat Cell Biol. 2004; 6: 207-14, CrossRef.

El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E. MiR-375 targets 3-phosphoinositidedependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic betacells. Diabetes. 2008; 57: 2708-17, CrossRef.

Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development. 2005; 132: 4645-52, CrossRef.

Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004; 279: 52361-5, CrossRef.

Teleman AA, Maitra S, Cohen SM. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev. 2006; 20: 417-22, CrossRef.

Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem. 2007; 282: 32582-90, CrossRef.

Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 2007; 5: e203, CrossRef.

Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic betacell lines. J Biol Chem. 2007; 282: 19575-88, CrossRef.

Ippel JH, de Haas CJ, Bunschoten A, van Strijp JA, Kruijtzer JA, Liskamp RM, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem. 2007; 282: 12363-7, CrossRef.

Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA. 2007; 104: 3432-7, CrossRef.

Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13: 613-8, CrossRef.

Collins KK, Van Hare GF. Advances in congenital long QT syndrome. Curr Opin Pediatr. 2006; 18: 497-502, CrossRef.

Paulussen A, Yang P, Pangalos M, Verhasselt P, Marrannes R, Verfaille C, et al. Analysis of the human KCNH2(HERG) gene: identification and characterization of a novel mutation Y667X associated with long QT syndrome and a nonpathological 9 bp insertion. Hum Mutat. 2000; 15: 483, CrossRef.

Brundel BJJ, Van Gelder IC, Henning RH, Tuinenburg AE, Wietses M, Grandjean JG, et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol. 2001; 37: 926-32, CrossRef.

Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial Mir-126 and other microRNAs in type 2 diabetes. Circ Res. 2010; 107: 810-7, CrossRef.

Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med. 1993; 328: 1676-85, CrossRef.

Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease: the Framingham offspring study. Circulation. 2008; 118: 2533-9, CrossRef.

Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008; 15: 261-71, CrossRef.

Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008; 15: 272-84, CrossRef.

VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res. 2003; 59: 277-87, CrossRef.

Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009; 2: ra81, CrossRef.

Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood. 2009; 114: 723-32, CrossRef.

Petri A, Lindow M, Kauppinen S. MicroRNA silencing in primates: towards the development of novel therapeutics. Cancer Res. 2009; 69: 393-5, CrossRef.

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18: 997-1006, CrossRef.

Chang TC, Mendell JT. MicroRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet. 2007; 8: 215-39, CrossRef.

Kolfschoten IGM, Roggli E, Nesca V, Regazzi R. Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab. 2001; 11 (Suppl 4): 118-29, CrossRef.

Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 preadipocyte differentiation. RNA 2006; 12: 1626-32, CrossRef.

Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006; 38: 228-33, CrossRef.

Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, et al. Antagonism of microRNA-122 in mice by systemically administered LNAantimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008; 36: 1153-62, CrossRef.

Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007; 4: 721-6, CrossRef.

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors de nes cancer gene targets. Proc Natl Acad Sci USA. 2006; 103: 2257-61, CrossRef.

DOI: https://doi.org/10.18585/inabj.v3i1.130

Indexed by:






The Prodia Education and Research Institute