Mitochondrial Dysfunction in Metabolic Disease
Abstract
BACKGROUND: Mitochondrial function and behavior are central to the physiology of humans and, consequently, "mitochondrial dysfunction" has been implicated in a wide range of disease.
CONTENT: Mitochondrial ROS might attack various mitochondrial constituents, causing mitochondrial DNA mutations and oxidative damage to respiratory enzymes. A defect in mitochondrial respiratory enzymes would increase mitochondrial production of ROS, causing further mitochondrial damage and dysfunction. Mitochondrial dysfunction is associated with diseases, such as neurodegenerative disorders, cardiomyopathies, metabolic syndrome, obesity, and cancer. Pathways that improve mitochondrial function, attenuate mitochondrial oxidative stress, and regulate mitochondrial biogenesis have recently emerged as potential therapeutic targets.
SUMMARY: Mitochondria perform diverse yet interconnected functions, produce ATP and many biosynthetic intermediates while also contribute to cellular stress responses such as autophagy and apoptosis. Mitochondria form a dynamic, interconnected network that is intimately integrated with other cellular compartments. It is therefore not suprising that mitochondrial dysfunction has emerged as a key factor in a myriad of diseases, including neurodegenerative, cancer, and metabolic disorders. Interventions that modulate processes involved in regulation of mitochondrial turnover, with calorie restriction and induction of mitochondrial biogenesis, are of particular interest.
KEYWORDS: mitochondrial biogenesis, mitochondrial dysfunction, reactive oxygen species (ROS), metabolic diseases
Full Text:
PDFReferences
Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res. 2012; 110: 1109-24, CrossRef.
Hoppeler H, Fluck M. Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc. 2003; 35: 95-104, CrossRef.
Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008; 451: 1008-12, CrossRef.
Nunnanri J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012; 148: 1145-59, CrossRef.
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005; 115: 1627-35, CrossRef.
Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 2000; 1492: 203-6, CrossRef.
Kuramoto N, Wilkins ME, Fairfax BP, Revilla-Sanchez R, Terunuma M, Tamaki K, et al. Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron. 2007; 53: 233-47, CrossRef.
Yang Y, Atasoy D, Su HH, Sternson SM. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell. 2011; 146: 992-1003, CrossRef.
Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008; 88: 611-38, CrossRef.
Darley-Usmar V. The powerhouse takes control of the cell; the role of mitochondria in signal transduction. Free Radic Biol Med. 2004; 37: 753-4, CrossRef.
Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007; 292: C670-86, CrossRef.
Trifunovic A, Larsson NG. Mitochondrial dysfunction as a cause of ageing. J Intern Med 2008; 263: 167-78, CrossRef.
Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010; 35: 505-13, CrossRef.
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003; 552: 335-44, CrossRef.
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417: 1-13, CrossRef.
Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004; 279: 49064-73, CrossRef.
Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem. 2003; 278: 5557-63, CrossRef.
Latronico MVG, Condorelli G. The might of microRNA in mitochondria. Circ Res. 2012; 110: 1540-2, CrossRef.
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009; 138: 628-44, CrossRef.
Divakaruni AS, Murphy AN. A mitochondrial mystery, solved. Science. 2012; 337: 41-3, CrossRef.
Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012; 337: 96-100, CrossRef.
Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science. 2012; 337: 93-6, CrossRef.
Von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, et al. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell. 2011; 21: 694-707, CrossRef.
Heo JM, Livnat-Levanon N, Taylor EB, Jones KT, Dephoure N, Ring J, et al. A stress-responsive system for mitochondrial protein degradation. Mol Cell. 2010; 40: 465-80, CrossRef.
Pagliarini DJ, Calvo SE, Chang B, Sheth BC, Vafai SB, Ong SE, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008; 134: 112-23, CrossRef.
Hoppins S, Lackner L, Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem. 2007; 76: 751-80, CrossRef.
Lackner LL, Nunnari J. Small molecule inhibitors of mitochondrial division: tools that translate basic biological research into medicine. Chem Biol. 2010; 17: 578-83, CrossRef.
Goldman SJ, Taylor R, Zhang Y, Jin S. Autophagy and the degradation of mitochondria. Mitochondrion. 2010; 10: 309-15, CrossRef.
Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role fo PGC-1α. Cardiovasc Res. 2008; 79: 208-17, CrossRef.
Bereiter-Hahn J. Behavior of mitochondria in the living cell. Int Rev Cytol. 1990; 122: 1-63, CrossRef.
Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006; 125: 1241-52, CrossRef.
Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem. 2003; 278: 17190-7, CrossRef.
Soriano FX, Liesa M, Bach D, Chan DC, Palacin M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin-2. Diabetes. 2006; 55: 1783-91, CrossRef.
Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E et al. Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J. 2005; 19: 43-52, CrossRef.
Hatch GM. Cell biology of cardiac mitochondrial phospholipids. Biochem Cell Biol. 2004; 82: 99-112, CrossRef.
Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010; 12: 814-22, CrossRef.
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004; 15: 1101-11, CrossRef.
Cuervo AM. Autophagy’s top chef. Science. 2011; 332: 1392-3, CrossRef.
Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010; 13: 805-11, CrossRef.
Till A, Subramani S. A balancing act for autophagin. J Clin Invest. 2010; 120: 2273-6, CrossRef.
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007; 87: 99-163, CrossRef.
Vaux DL. Apoptogenic factors released from mitochondria. Biochem Biophys Acta. 2011; 1813: 546-50, CrossRef.
Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res. 2007; 100: 795-806, CrossRef.
Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A. Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res. 2006; 99: 924-32, CrossRef.
Benit P, Rustin P. Changing the diet to make more mitochondria and protect the heart. Circ Res. 2012; 110: 1047-8, CrossRef.
Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998; 78: 547-81, PMID.
Gonzalez-Flecha B, Cutrin JC, Boveris A. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion. J Clin Invest. 1993; 91: 456-64, CrossRef.
Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol. 2004; 287: R1244-9, CrossRef.
Navarro A, Gomez C, Sanchez-Pino MJ, Gonzalez H, Bandez MJ, Boveris AD, et al. Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol Regul Integr Comp Physiol. 2005; 289: R1392-9, CrossRef.
Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Err-alpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA. 2004; 101: 6570-5, CrossRef.
Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Co-ordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003; 100: 8466-71, CrossRef.
Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003; 300: 1140-2, CrossRef.
Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005; 54: 1926-33, CrossRef.
Knutti D, Kralli A. PGC-1, a versatile coactivator. Trends Endocrinol Metab. 2001; 12: 360-5, CrossRef.
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002; 418: 797-801, CrossRef.
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998; 92: 829-39, CrossRef.
Patti ME. Gene expression in humans with diabetes and prediabetes: what have we learned about diabetes pathophysiology? Curr Opin Clin Nutr Metab Care. 2004; 7: 383-90, CrossRef.
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy hoemostasis. Nat Rev Mol Cell Biol. 2012; 13: 251-62, CrossRef.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001; 108: 1167-74, CrossRef.
Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002; 277: 25226-32, CrossRef.
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444: 337-42, CrossRef.
Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun. 2005; 338: 694-9, CrossRef.
Lim HW, Lim HY, Wong KP. Uncoupling of oxidative phosphorylation by curcumin: implication of its cellular mechanism of action. Biochem Biophys Res Commun. 2009; 389: 187-92, CrossRef.
Lee MS, Kim IH, Kim CT, Kim Y. Reduction of body weight by dietary garlic is associated with an increase in uncoupling protein mRNA expression and activation of AMP-activated protein kinase in diet-induced obese mice. J Nutr. 2011; 141: 1947-53, CrossRef.
Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006; 55: 2256-64, CrossRef.
Lin YC, Hung CM, Tsai JC, Lee JC, Chen YL, Wei CW, et al. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J Agric Food Chem. 2010; 58: 9511-7, CrossRef.
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005; 1: 361-70, CrossRef.
Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMPactivated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007; 104: 12017-22, CrossRef.
Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010; 11: 213-9, CrossRef.
Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature. 2010; 466: 68-76, CrossRef.
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011; 331: 456-61, CrossRef.
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011; 13: 132-41, CrossRef.
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127: 1109-22, CrossRef.
Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008; 8: 157-68, CrossRef.
Sharma S, Anjaneyulu M, Kulkarni SK, Chopra K. Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology. 2006; 76: 69-75, CrossRef.
Su HC, Hung LM, Chen JK. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2006; 290: E1339-46, CrossRef.
Thirunavukkarasu M, Penumathsa SV, Koneru S, Juhasz B, Zhan L, Otani H, Bagchi D, et al. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med. 2007; 43: 720-9, CrossRef.
Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006; 55: 2180-91, CrossRef.
Ungvari ZI, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith K, et al. Increased mitochondrial H2O2 production promotes endothelial NF-κB activation in aged rat arteries. Am J Physiol Heart Circ Physiol. 2007; 293: H37-47, CrossRef.
Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol. 2009; 297: H13-20, CrossRef.
Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA. 2006; 103: 1768-73, CrossRef.
Lopez-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol. 2008; 43: 813-9, CrossRef.
Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of enos. Science. 2005; 310: 314-7, CrossRef.
Shinmura K, Tamaki K, Sano M, Nakashima-Kamimura N, Wolf AM, Amo T, et al. Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res. 2011; 109: 396-406, CrossRef.
Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G, et al. Anti-oxidative and antiinflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and sirt1. Mech Ageing Dev. 2009; 130: 518-27, CrossRef.
Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the sirt1 deacetylase. Science. 2004; 305: 390-2, CrossRef.
Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R. Cardioprotective effects of short-term caloric restriction aremediated by adiponectin via activation of amp-activated protein kinase. Circulation. 2007;116: 2809-17, CrossRef.
Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, et al. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci USA. 2008; 105: 2325-30, CrossRef.
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007; 297: 842-57, CrossRef.
DOI: https://doi.org/10.18585/inabj.v4i3.172
Copyright (c) 2012 The Prodia Education and Research Institute
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
The Prodia Education and Research Institute