Combination of Metformin and Magnesium Citrate Reduces TNF-α, NF-κB p65, IL-6, CD4, and MMP-9 Expressions in Diabetic Model Rats

Rachmi Fauziah Rahayu, Adi Prayitno, Bambang Purwanto, Widiastuti Soewondo, Ida Nurwati, Eti Poncorini Pamungkasari, Paramasari Dirgahayu

Abstract


BACKGROUND: Diabetes, which causes various complications, involves pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B p65 (NF-κB p65), interleukin-6 (IL-6), cluster of differentiation 4 (CD4), and matrix metalloproteinase-9 (MMP-9). Magnesium has demonstrated anti-diabetic properties, but its anti-inflammatory effects in preventing cardiovascular complications remain unclear. This study aimed to evaluate the anti-inflammatory effects of magnesium citrate, alone and in combination with metformin, by measuring TNF-α, NF-κB p65, IL-6, CD4, and MMP-9 expression in diabetic model rats.

METHODS: Thirty male Wistar rats were divided into five groups: normal control, diabetes control, metformin (treated with 9 mg/200 g/day metformin), magnesium citrate (treated with 3.6 mg/200 g/day magnesium citrate), and combination therapy (treated with 4.5 mg/200 g/day metformin + 1.8 mg/200 g/day magnesium citrate). Diabetes was induced in all groups except the normal control group using streptozotocin (STZ) and nicotinamide (NA). TNF-α, NF-κB p65, IL-6, CD4, and MMP-9 expression levels were measured using enzyme-linked immunosorbent assay (ELISA).

RESULTS: Significant differences in TNF-α, NF-κB p65, IL-6, CD4, and MMP-9 expression levels were observed across all groups (p<0.001). The combination therapy group demonstrated the most significant reduction in all parameters compared to the diabetic control group (p<0.001) and other therapy groups. Both metformin and magnesium citrate monotherapies showed moderate reductions in cytokine levels but were less effective than combination therapy.

CONCLUSION: Combination therapy with metformin and magnesium citrate exhibited the most potent anti-inflammatory effects, significantly reducing TNF-α, NF-κB p65, IL-6, CD4, and MMP-9 expressions in diabetic Wistar rats. This combination has potential as a therapeutic approach for managing diabetes and its complications.

KEYWORDS: diabetes mellitus, inflammation, cytokines, metformin, magnesium citrate


Full Text:

PDF

References


Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023; 402(10397): 203-34, CrossRef.

Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: A review of current evidence. Diabetologia. 2019; 62(1): 3-16, CrossRef.

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2017; 14(2): 88-98, CrossRef.

Wen P, Luo P, Zhang B, Zhang Y. Mapping knowledge structure and global research trends in gout: A bibliometric analysis from 2001 to 2021. Front Public Health. 2022: 10: 924676, CrossRef.

Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF Diabetes Atlas [Internet]. 10th Ed. Brussels: International Diabetes Federation; 2021. Chapter 3, Global picture. Available from: https://www.ncbi.nlm.nih.gov/.

Cagnina A, Chabot O, Davin L, Lempereur M, Maréchal P, Oury C, et al. Atherosclerosis, an inflammatory disease. Rev Med Liege. 2022; 77(5-6): 302-9, PMID.

Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, et al. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023; 8(1): 152, CrossRef.

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2: 17023, CrossRef.

Murlistyarini S, Dani AA. Peran matriks metaloproteinase (MMP) pada proses photoaging. J Dermatol, Venereol Aesthet. 2022; 3(1): 13-22, article.

Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics'2017 update: A report from the American Heart Association. Circulation. 2017; 135(10): e146-603, CrossRef.

National Institute of Health [Internet]. Magnesium - Health Professional Fact Sheet [updated 2022 Jun 2; cited 2024 Nov 14]. Available from: https://ods.od.nih.gov/.

Kostov K. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signaling. Int J Mol Sci. 2019; 20(6): 1351, CrossRef.

Gommers LMM, Hoenderop JGJ, Bindels RJM, De Baaij JHF. Hypomagnesemia in type 2 diabetes: A vicious circle? Diabetes. 2016; 65(1): 3-13, CrossRef.

Karatas S, Hacıoglu Y, Kose Ş. Magnesium deficiency in type 2 diabetes mellitus and its effect on blood glucose control and diabetes complications. Int J Endocrinol. 2022; 18(2): 104-8, CrossRef.

Dasgupta A, Sarma D, Saikia UK. Hypomagnesemia in type 2 diabetes mellitus. Indian J Endocrinol Metab. 2012; 16(6): 1000-3, CrossRef.

Azad KM, Sutradhar SR, Khan NA, Haque MF, Sumon SM, Barman TK, et al. Serum magnesium in hospital admitted diabetic patients. Mymensingh Med J. 2014; 23(1): 28-34, PMID.

Yang Z, Zhang Y, Gao J, Yang Q, Qu H, Shi J. Association between dietary magnesium and 10-year risk of a first hard atherosclerotic cardiovascular disease event. Am J Med Sci. 2024; 368(4): 355-60, CrossRef.

Agrawal P, Arora S, Singh B, Manamalli A, Dolia PB. Association of macrovascular complications of type 2 diabetes mellitus with serum magnesium levels. Diabetes Metab Syndr. 2011; 5(1): 41-4, CrossRef.

Saisho Y. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets. 2015; 15(3): 196-205, CrossRef.

Karbalaee-Hasani A, Khadive T, Eskandari M, Shahidi S, Mosavi M, Nejadebrahimi Z, et al. Effect of metformin on circulating levels of inflammatory markers in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Ann Pharmacother. 2021; 55(9): 1096-109, CrossRef.

Pramesthi ADED, Ardana M, Indriyanti N. Drug-herb interaction between metformin and momordica charantia in diabetic mice. Mol Cell Biomed Sci. 2019; 3(2): 81-7, CrossRef.

Ahmad MF, Haidar MA, Naseem N, Ahsan H, Siddiqui WA. Hypoglycaemic, hypolipidaemic and antioxidant properties of Celastrus paniculatus seed extract in STZ-induced diabetic rats. Mol Cell Biomed Sci. 2023; 7(1): 10-7, CrossRef.

Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol. 2019; 14(1): 50-9, CrossRef.

Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016; 20(4): 546-51, CrossRef.

Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys. 2007; 458(1): 40-7, CrossRef.

Odusan OO, Familoni OB, Odewabi AO, Idowu AO, Adekolade AS. Patterns and correlates of serum magnesium levels in subsets of type 2 diabetes mellitus patients in nigeria. Indian J Endocrinol Metab. 2017; 21(3): 439-42, CrossRef.

Kupetsky-Rincon EA, Uitto J. Magnesium: Novel applications in cardiovascular disease - A review of the literature. Ann Nutr Metab. 2012; 61(2): 102-10, CrossRef.

Xu L, Li X, Wang X, Xu M. Effects of magnesium supplementation on improving hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes: A pooled analysis of 24 randomized controlled trials. Front Nutr. 2023; 9: 1020327, CrossRef.

Ter Braake AD, Shanahan CM, De Baaij JHF. Magnesium counteracts vascular calcification: Passive interference or active modulation? Arterioscler Thromb Vasc Biol. 2017; 37(8): 1431-45, CrossRef.

Chen X, Andresen1 BT, Hill M, Zhang J, Booth F, Zhang C. Role of reactive oxygen species in tumor necrosis factor-alpha induced endothelial dysfunction. Curr Hypertens Rev. 2008; 4(4): 245-55, CrossRef.

Milutinović A, Šuput D, Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J Basic Med Sci. 2020; 20(1): 21-30, CrossRef.

Rostami S. IRCT20210413050957N1: Survey the effect of magnesium citrate supplementation on clinical symptoms and TNF-a and hs-CRP factors in patients with COVID-19. Iranian Registry of Clinical Trials. 2021. Available from: https://irct.behdasht.gov.ir/.

Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, et al. Inflammation in diabetes complications: Molecular mechanisms and therapeutic interventions. MedComm. 2024; 5(4): e516, CrossRef.

Gröber U, Schmidt J, Kisters K. Magnesium in prevention and therapy. Nutrients. 2015; 7(9): 8199-226, CrossRef.

Saigusa R, Winkels H, Ley K. T cell subsets and functions in atherosclerosis. Nat Rev Cardiol. 2020; 17(7): 387-401, CrossRef.

Li T, Li X, Feng Y, Dong G, Wang Y, Yang J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediators Inflamm. 2020; 2020: 3872367, CrossRef.

Alwahaibi N, Budin SB, Hamid ZA, Mohamed J, Latip J, Ismail NB, et al. Tocotrienol rich fraction from palm oil reduces plasma and erythrocyte membrane lipid alteration in diabetic rats: Tocotrienols reduce dyslipidemia in plasma and erythrocytes.Indones Biomed J. 2019; 11(3): 247-56, CrossRef.

Lestari K, Ridho A, Nurcayani N, Ramadhania ZM, Barliana MI. Stevia rebaudiana Bertoni leaves extract as a nutraceutical with hypoglycemic activity in diabetic rats. Indones Biomed J. 2019; 11(2): 182-7, CrossRef.

Kartikadewi A, Prasetyo A, Budipradigdo L, Nugroho H, Tjahjono K, Lelono A. Artemisia annua leaf extract increases GLUT-4 expression in type 2 diabetes mellitus rat. Indones Biomed J. 2019; 11(1): 78-84, CrossRef.




DOI: https://doi.org/10.18585/inabj.v16i6.3360

Copyright (c) 2024 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                

 

 

The Prodia Education and Research Institute