Resveratrol: The Multifaceted Roles and Mechanisms of Polyphenol to Improve Longevity, Immunomodulation, and Age-related Diseases

Anna Meiliana, Nurrani Mustika Dewi, Andi Wijaya

Abstract


High in polyphenols diet has been known to protect human against chronic metabolic diseases including cancer, diabetes, neurological and cardiovascular disorders. Resveratrol (RSV) is a natural polyphenol that presents in fruits, vegetables, and nuts. The polyphenols content of RSV possesses anti-inflammatory, antioxidant, immunomodulatory, and anticancer properties by influencing the nuclear factor-kappaB (NF-κB), p53, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathways, enzymatic antioxidants expressions, and the levels of microRNAs. Therefore, this review article will focus on the potential of RSV in improving aging and metabolic diseases, which mostly induced by low-chronic inflammation and oxidative stress. RSV is also known as calorie restriction (CR)-mimetics to activate sirtuins family which improve mitochondrial function, repair DNA and genomic stability and reduce inflammation thus become a promising substance to extend health span and longevity. RSV can be useful as a supplement to prevent aging-related diseases, with a dose range between 250–1,000 mg depending on the intended health benefit and individual factors. More clinical data is needed to determine the impact of RSV metabolites and the relationship between dose, concentration, and effect, particularly in the context of chronic illness.

KEYWORDS: mesenchymal stem cell, extracellular vesicle, exosome, cancer therapy, drug delivery


Full Text:

PDF

References


Recio M, Andujar I, Rios J. Anti-inflammatory agents from plants: Progress and potential. Curr Med Chem. 2012; 19(14): 2088-103, CrossRef.

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010; 2(12): 1231-46, CrossRef.

Cheynier V. Polyphenols in foods are more complex than often thought. Am J Clin Nutr. 2005; 81(Suppl 1): 223S-9S, CrossRef.

Mosele JI, Macià A, Romero MP, Motilva MJ, Rubió L. Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate products (juice, pulp and peel extract) to study the stability and catabolism of phenolic compounds. J Funct Foods. 2015; 14: 529-540, CrossRef.

Zeka K, Ruparelia K, Arroo R, Budriesi R, Micucci M. Flavonoids and their metabolites: Prevention in cardiovascular diseases and diabetes. Diseases. 2017; 5(3): 19, CrossRef.

Williamson G, Clifford MN. Role of the small intestine, colon and microbiota in de-termining the metabolic fate of polyphenols. Biochem Pharmacol. 2017; 139: 24-39, CrossRef.

Cao H, Chen X, Jassbi AR, Xiao J. Microbial biotransformation of bioactive flavonoids. Biotechnol Adv. 2015; 33(1): 214-23, CrossRef.

Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frígola A. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr Rev Food Sci Food Saf. 2014; 13(2): 155-71, CrossRef.

Teng H, Chen L. Polyphenols and bioavailability: An update. Crit Rev Food Sci Nutr. 2019; 59(13): 2040-51, CrossRef.

Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, Maddipati KR, Parinandi NL. Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal. 2012; 17(2): 327-39, CrossRef.

Orallo F. Trans-resveratrol: A magical elixir of eternal youth? Curr Med Chem. 2008; 15(19): 1887-98, CrossRef.

Soleas GJ, Diamandis EP, Goldberg DM. The world of resveratrol. Adv Exp Med Biol. 2001: 492: 159-82, CrossRef.

Calabrese EJ, Mattson MP, Calabrese V. Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Hum Exp Toxicol. 2010; 29(12): 980-1015, CrossRef.

Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009; 325(5937): 201-4, CrossRef.

Kennedy ET. Evidence for nutritional benefits in prolonging wellness. Am J Clin Nutr. 2006; 83(2): 410S-4S, CrossRef.

Bengmark S. Acute and "chronic" phase reaction-a mother of disease. Clin Nutr. 2004; 23(6): 1256-66, CrossRef.

John CM, Sandrasaigaran P, Tong CK, Adam A, Ramasamy R. Immunomodulatory activity of polyphenols derived from Cassia auriculata flowers in aged rats. Cell Immu-nol. 2011; 271(2): 474-9, CrossRef.

Meiliana A, Dewi NM, Wijaya A. Resveratrol: A sirtuin activator and the fountain of youth. Indones Biomed J. 2015; 7(1): 1-14, CrossRef.

Capiralla H, Vingtdeux V, Venkatesh J, Dreses-Werringloer U, Zhao H, Davies P, Ma-rambaud P. Identification of potent small-molecule inhibitors of STAT3 with anti-inflammatory properties in RAW 264.7 macrophages. FEBS J. 2012; 279(20): 3791-9, CrossRef.

Zhang Y, Liu H, Tang W, Qiu Q, Peng J. Resveratrol prevents TNF-α-induced VCAM-1 and ICAM-1 upregulation in endothelial progenitor cells via reduction of NFκB activa-tion. J Int Med Res. 2020; 48(9): 300060520945131, CrossRef.

Candelario-Jalil E, de Oliveira ACP, Gräf S, Bhatia HS, Hüll M, Muñoz E, et al. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation. 2007; 4: 25, CrossRef.

Terzo M, Iantomasi M, Tsiani E. Effects of resveratrol on adipocytes: Evidence from in vitro and in vivo studies. Molecules. 2024; 29(22): 5359, CrossRef.

Karasawa K, Uzuhashi Y, Hirota M, Otani H. A matured fruit extract of date palm tree (Phoenix dactylifera L.) stimulates the cellular immune system in mice. J Agric Food Chem. 2011; 59(20): 11287-93, CrossRef.

Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010; 10(7): 490-500, CrossRef.

Petro TM. Regulatory role of resveratrol on Th17 in autoimmune disease. Int Immunopharmacol. 2011; 11(3): 310-8, CrossRef.

Wang HK, Yeh CH, Iwamoto T, Satsu H, Shimizu M, Totsuka M. Dietary flavonoid naringenin induces regulatory T cells via an aryl hydrocarbon receptor mediated pathway. J Agric Food Chem. 2012; 60(9): 2171-8, CrossRef.

González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr. 2011; 51(4): 331-62, CrossRef.

Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018; 10(11): 1618, CrossRef.

Bitler CM, Viale TM, Damaj B, Crea R. Hydrolyzed olive vegetation water in mice has anti-inflammatory activity. J Nutr. 2005; 135(6): 1475-9, CrossRef.

Nam NH. Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem. 2006; 6(8): 945-51, CrossRef.

Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev. 2004; 18(18): 2195-224, CrossRef.

Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997; 272(33): 20313-6, CrossRef.

Salzano S, Checconi P, Hanschmann EM, Lillig CH, Bowler LD, Chan P, et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci USA. 2014; 111(33): 12157-62, CrossRef.

Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA. Reactive oxygen species (ROS)-a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cell Mater. 2012; 24: 249-65, CrossRef.

Mahal HS, Mukherjee T. Scavenging of reactive oxygen radicals by resveratrol: Anti-oxidant effect. Res Chem Intermed. 2006; 32: 59-71, CrossRef.

Leidal AM, Levine B, Debnath J. Autophagy and the cell biology of age-related disease. Nat Cell Biol. 2018; 20(12): 1338-48, CrossRef.

Park D, Jeong H, Lee MN, Koh A, Kwon O, Yang YR, et al. Resveratrol induces au-tophagy by directly inhibiting mTOR through ATP competition. Sci Rep. 2016; 6: 21772, CrossRef.

Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, et al. Polyphenols as caloric-restriction mimetics and autophagy inducers in aging research. Nutrients. 2020; 12(5): 1344, CrossRef.

Pajares M, Jiménez-Moreno N, Dias IHK, Debelec B, Vucetic M, Fladmark KE, et al. Redox control of protein degradation. Redox Biol. 2015; 6: 409-20, CrossRef.

De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955; 60(4): 604-17, CrossRef.

Jung T, Catalgol B, Grune T. The proteasomal system. Mol Aspects Med. 2009; 30(4): 191-296, CrossRef.

Pallauf K, Rimbach G. Autophagy, polyphenols and healthy ageing. Ageing Res Rev. 2013; 12(1): 237-52, CrossRef.

Di Malta C, Cinque L, Settembre C. Transcriptional regulation of autophagy: Mechanisms and diseases. Front Cell Dev Biol. 2019; 7: 114, CrossRef.

Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: An update. Ageing Res Rev. 2017; 39: 36-45, CrossRef.

Di Francesco A, Deighan AG, Litichevskiy L, Chen Z, Luciano A, Robinson L, et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature. 2024; 634(8034): 684-92, CrossRef.

Chung KW, Kim DH, Park MH, Choi YJ, Kim ND, Lee J, et al. Recent advances in calorie restriction research on aging. Exp Gerontol. 2013; 48(10): 1049-53, CrossRef.

Aboalroub AA, Bachman AB, Zhang Z, Keramisanou D, Merkler DJ, Gelis I. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase. PLoS One. 2017; 12(5): e0177270, CrossRef.

Mariño G, Pietrocola F, Madeo F, Kroemer G. Caloric restriction mimetics: Natural/physiological pharmacological autophagy inducers. Autophagy. 2014; 10(11): 1879-82, CrossRef.

Lewandowska U, Szewczyk K, Hrabec E, Janecka A, Gorlach S. Overview of metabolism and bioavailability enhancement of polyphenols. J Agric Food Chem. 2013; 61(50): 12183-99, CrossRef.

Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009; 2(5): 270-8, CrossRef.

Gertz M, Nguyen GTT, Fischer F, Suenkel B, Schlicker C, Fränzel B, et al. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One. 2012; 7(11): e49761, CrossRef.

Kuchitsu Y, Fukuda M. Revisiting Rab7 functions in mammalian autophagy: Rab7 knockout studies. Cells. 2018; 7(11): 215, CrossRef.

Kitada M, Ogura Y, Koya D. Role of Sirt1 as a regulator of autophagy. In: Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging Volume 8 - Human Diseases. Amsterdam: Elsevier, Academic Press; 2016. p. 89-100, CrossRef.

Zhou J, Liao W, Yang J, Ma K, Li X, Wang Y, et al. FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy. 2012; 8(12): 1712-23, CrossRef.

Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011; 12(1): 21-35, CrossRef.

Min J, Landry J, Sternglanz R, Xu RM. Crystal structure of a SIR2 homolog-NAD complex. Cell. 2001; 105(2): 269-79, CrossRef.

Kane AE, Sinclair DA. Sirtuins and NAD⁺ in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 2018; 123(7): 868-85, CrossRef.

Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone. 2019; 121: 284-92, CrossRef.

Sergi C, Shen F, Liu SM. Insulin/IGF-1R, SIRT1, and FoxOs pathways-an intriguing interaction platform for bone and osteosarcoma. Front Endocrinol. 2019; 10: 93, CrossRef.

Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022; 7(1): 402, CrossRef.

Haigis MC, Sinclair DA. Mammalian sirtuins: Biological insights and disease relevance. Annu Rev Pathol. 2010; 5: 253-95, CrossRef.

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012; 13(4): 225-38, CrossRef.

Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999; 13(19): 2570-80, CrossRef.

Kim DH, Jung IH, Kim DH, Park SW. Knockout of longevity gene Sirt1 in zebrafish leads to oxidative injury, chronic inflammation, and reduced lifespan. PLoS One. 2019; 14(7): e0220581, CrossRef.

Cantó C, Auwerx J. Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)? Pharmacol Rev. 2012; 64(1): 166-87, CrossRef.

Lamichane S, Baek SH, Kim YJ, Park JH, Lamichane BD, Jang WB, et al. MHY2233 attenuates replicative cellular senescence in human endothelial progenitor cells via SIRT1 signaling. Oxid Med Cell Longev. 2019; 2019: 6492029, CrossRef.

Pang J, Xiong H, Ou Y, Yang H, Xu Y, Chen S, et al. SIRT1 protects cochlear hair cells and delays age-related hearing loss via autophagy. Neurobiol Aging. 2019; 80: 127-37, CrossRef.

Xie L, Huang R, Liu S, Wu W, Su A, Li R, et al. A positive feedback loop of SIRT1 and miR17HG promotes the repair of DNA double-stranded breaks. Cell Cycle. 2019; 18(18): 2110-23, CrossRef.

Nakagawa T, Guarente L. Targets of sirtuins, NAD metabolism: SnapShot: Sirtuins, NAD, and aging. Cell Metab. 2014; 20(4): 918-19, CrossRef.

Kaszubowska L, Foerster J, Kwiatkowski P, Schetz D. NKT-like cells reveal higher than T lymphocytes expression of cellular protective proteins HSP70 and SOD2 and comparably increased expression of SIRT1 in the oldest seniors. Folia Histochem Cyto-biol. 2018; 56(4): 231-40, CrossRef.

Yao H, Rahman I. Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharmacol. 2012; 84(10): 1332-9, CrossRef.

Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol, and melatonin: Role of SIRT1 and implications for aging and related diseases. Mech Ageing Dev. 2015; 146-8: 28-41, CrossRef.

Chen C, Zhou M, Ge Y, Wang X. SIRT1 and aging-related signaling pathways. Mech Ageing Dev. 2020; 185: 111196, CrossRef.

Vaziri H, Dessain SK, Eaton EN, Imai SI, Frye RA, Pandita TK, et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001; 107(2): 149-59, CrossRef.

Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001; 107(2): 137-48, CrossRef.

Herranz D, Serrano M. SIRT1: Recent lessons from mouse models. Nat Rev Cancer. 2010; 10(12): 819-23, CrossRef.

Lerin C, Rodgers JT, Kalume DE, Kim S, Pandey A, Puigserver P. GCN5 acetyltrans-ferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 2006; 3(6): 429-38, CrossRef.

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005; 434(7029): 113-8, CrossRef.

Minor RK, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM, et al. SRT1720 improves survival and healthspan of obese mice. Sci Rep. 2011; 1: 70, CrossRef.

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425(6954): 191-6, CrossRef.

Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 2014; 35(3): 146-54, CrossRef.

Dai H, Kustigian L, Carney D, Case A, Considine T, Hubbard BP, et al. SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of en-zyme and activator. J Biol Chem. 2010; 285(42): 32695-703, CrossRef.

Bonkowski MS, Sinclair DA. Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016; 17(11): 679-90, CrossRef.

Mercken EM, Carboneau BA, Krzysik-Walker SM, De Cabo R. Of mice and men: The benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev. 2012; 11(3): 390-8, CrossRef.

Spindler SR. Caloric restriction: From soup to nuts. Ageing Res Rev. 2010; 9(3): 324-53, CrossRef.

Phung OJ, Sobieraj DM, Engel SS, Rajpathak SN. Early combination therapy for the treatment of type 2 diabetes mellitus: Systematic review and meta-analysis. Diabetes Obes Metab. 2014; 16(5): 410-7, CrossRef.

Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444(7117): 337-42, CrossRef.

Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006; 127(6): 1109-22, CrossRef.

Pirola L, Fröjdö S. Resveratrol: One molecule, many targets. IUBMB Life. 2008; 60(5): 323-32, CrossRef.

Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012; 148(3): 421-33, CrossRef.

Milne JC, Denu JM. The Sirtuin family: Therapeutic targets to treat diseases of aging. Curr Opin Chem Biol. 2008; 12(1): 11-7, CrossRef.

Baur JA, Sinclair DA. Therapeutic potential of resveratrol: The in vivo evidence. Nat Rev Drug Discov. 2006; 5(6): 493-506, CrossRef.

Shou W, Sakamoto KM, Keener J, Morimoto KW, Traverso EE, Azzam R, et al. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure inde-pendently of controlling mitotic exit. Mol Cell. 2001; 8(1): 45-55, CrossRef.

Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science. 2002; 298(5602): 2390-2, CrossRef.

Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003; 23(9): 3173-85, CrossRef.

Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001; 410(6825): 227-30, CrossRef.

Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, De Oliveira RM, et al. SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature. 2004; 429(6993): 771-6, CrossRef.

Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003; 12(1): 51-62, CrossRef.

Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al. Mammalian SIRT1 represses Forkhead transcription factors. Cell. 2004; 116(4): 551-63, CrossRef.

Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002; 21(10): 2383-96, CrossRef.

Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004; 305(5686): 1010-3, CrossRef.

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425(6954): 191-6, CrossRef.

Wood JG, Regina B, Lavu S, Hewitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004; 430(7000): 686-9, CrossRef.

Schmidt MT, Smith BC, Jackson MD, Denu JM. Coenzyme specificity of Sir2 protein deacetylases: Implications for physiological regulation. J Biol Chem. 2004; 279(38): 40122-9, CrossRef.

Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J Biol Chem. 2002; 277(47): 45099-107, CrossRef.

Borra MT, Langer MR, Slama JT, Denu JM. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemis-try. 2004; 43(32): 9877-87, CrossRef.

Lin SJ, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004; 18(1): 12-6, CrossRef.

Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature. 2006; 444(7121): 868-74, CrossRef.

Moniot S, Weyand M, Steegborn C. Structures, substrates, and regulators of mammalian sirtuins-opportunities and challenges for drug development. Front Pharmacol. 2012; 3: 16, CrossRef.

Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005; 280(17): 17187-95, CrossRef.

Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005; 280(17): 17038-45, CrossRef.

Yang H, Baur JA, Chen A, Miller C, Sinclair DA. Design and synthesis of compounds that extend yeast replicative lifespan. Aging Cell. 2007; 6(1): 35-43, CrossRef.

Dai H, Kustigian L, Carney D, Case A, Considine T, Hubbard BP, et al. SIRT1 activation by small molecules. J Biol Chem. 2010; 285(42): 32695-703, CrossRef.

Viswanathan M, Kim SK, Berdichevsky A, Guarente L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans lifespan. Dev Cell. 2005; 9(5): 605-15, CrossRef.

Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010; 285(11): 8340-51, CrossRef.

Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005; 280(17): 17187-95, CrossRef.

Gertz M, Nguyen GTT, Fischer F, Suenkel B, Schlicker C, Fränzel B, et al. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One. 2012; 7(11): e49761, CrossRef.

Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, et al. Chronic diseases, inflammation, and spices: How are they linked? J Transl Med. 2018; 16(1): 14, CrossRef.

Munn LL. Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med. 2017; 9(2): e1370, CrossRef.

Van Linthout S, Tschöpe C. Inflammation-cause or consequence of heart failure or both? Curr Heart Fail Rep. 2017; 14(4): 251-65, CrossRef.

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6): 7204-18, CrossRef.

Serhan CN. Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms. FASEB J. 2017; 31(4): 1273-88, CrossRef.

Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 2016; 38(4): 425-48, CrossRef.

Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol Bull. 2014; 140(3): 774-815, CrossRef.

Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol. 2015; 71: 40-56, CrossRef.

Nakamura K, Smyth MJ. Targeting cancer-related inflammation in the era of immunotherapy. Immunol Cell Biol. 2017; 95(4): 325-32, CrossRef.

Badri W, Miladi K, Nazari QA, Greige-Gerges H, Fessi H, Elaissari A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges, and prospects. Int J Pharm. 2016; 515(1-2): 757-73, CrossRef.

Murugaiyah V, Mattson MP. Neurohormetic phytochemicals: An evolutionary-bioenergetic perspective. Neurochem Int. 2015; 89: 271-80, CrossRef.

Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997; 275(5297): 218-20, CrossRef.

Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules. 2021; 26(1): 229, CrossRef.

Farris PK. Innovative cosmeceuticals: Sirtuin activators and anti-glycation compounds. Semin Cutan Med Surg. 2011; 30(3): 163-6, CrossRef.

Poulsen MM, Fjeldborg K, Ornstrup MJ, Kjær TN, Nøhr MK, Pedersen SB. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes. Biochim Biophys Acta Mol Basis Dis. 2015; 1852(6): 1124-36, CrossRef.

Meiliana A, Dewi NM, Wijaya A. Red meats and processed meat as carcinogenic foods and phytochemical-chemoprevention. Indones Biomed J. 2019; 11(3): 225-39, CrossRef.

Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444(7117): 337-42, CrossRef.

Pirola L, Fröjdö S. Resveratrol: One molecule, many targets. IUBMB Life. 2008; 60(5): 323-32, CrossRef.

Rauf A, Imran M, Sulera HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct. 2017; 8(12): 4284-305, CrossRef.

de Sá Coutinho D, Pacheco MT, Frozza RL, Bernardi A. Anti-inflammatory effects of resveratrol: Mechanistic insights. Int J Mol Sci. 2018; 19(6): 1812, CrossRef.

Shakeri F, Bianconi V, Pirro M, Sahebkar A. Effects of plant and animal natural products on mitophagy. Oxid Med Cell Longev. 2020; 2020: 6969402, CrossRef.

Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Defini-tions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013; 62(Suppl 25): D42-50, CrossRef.

Perrin S, Chaumais MC, O'Connell C, Amar D, Savale L, Jaïs X, et al. New pharmacotherapy options for pulmonary arterial hypertension. Expert Opin Pharmacother. 2015; 16(14): 2113-31, CrossRef.

Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009; 30(20): 2493-537, CrossRef.

Burks M, Stickel S, Galiè N. Pulmonary arterial hypertension: Combination therapy in practice. Am J Cardiovasc Drugs. 2018; 18(4): 249-57, CrossRef.

Saigal A, Ng WK, Tan RBH, Chan SY. Development of controlled release inhalable polymeric microspheres for treatment of pulmonary hypertension. Int J Pharm. 2013; 450(1-2): 114-22, CrossRef.

Rodríguez-Iturbe B, Quiroz Y, Nava M, Bonet L, Chávez M, et al. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol. 2002; 282(2): F191-201, CrossRef.

Javkhedkar AA, Quiroz Y, Rodriguez-Iturbe B, Vaziri ND, Lokhandwala MF, Banday AA. Resveratrol restored Nrf2 function, reduced renal inflammation, and mitigated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2015; 308(10): R840-6, CrossRef.

Thandapilly SJ, Wojciechowski P, Behbahani J, Louis XL, Yu L, Juric D, et al. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens. 2010; 23(2): 192-6, CrossRef.

Shelton P, Jaiswal AK. The transcription factor NF-E2-related factor 2 (Nrf2): A pro-tooncogene? FASEB J. 2013; 27(2): 414-23, CrossRef.

George L, Lokhandwala MF, Asghar M. Exercise activates redox-sensitive transcription factors and restores renal D1 receptor function in old rats. Am J Physiol Renal Physiol. 2009; 297(5): F1174-80, CrossRef.

Mirhadi E, Roufogalis BD, Banach M, Barati M, Sahebkar A. Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol Res. 2021; 170: 105741, CrossRef.

Li S, Hu T, Yuan T, Cheng D, Yang Q. Nucleoside diphosphate kinase B promotes osteosarcoma proliferation through c-Myc. Cancer Biol Ther. 2018; 19(7): 565-72, CrossRef.

Vetal S, Bodhankar SL, Mohan V, Thakurdesai PA. Anti-inflammatory and anti-arthritic activity of type-A procyanidine polyphenols from bark of Cinnamomum zeylanicum in rats. Food Sci Hum Wellness. 2013; 2(2): 59-67, CrossRef.

Duthie GG, Duthie SJ, Kyle JAM. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutr Res Rev. 2000; 13(1): 79-106, CrossRef.

Grosso G, Godos J, Lamuela-Raventos R, Ray S, Micek A, Pajak A, et al. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol Nutr Food Res. 2017; 61(6): 1600930, CrossRef.

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119(6): 1420-8, CrossRef.

Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002; 2(6): 442-54, CrossRef.

Amawi H, Ashby CR, Samuel T, Peraman R, Tiwari AK. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients. 2017; 9(8): 911, CrossRef.

Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr. 2010; 30: 173-99, CrossRef.

Prasad S, Phromnoi K, Yadav VR, Chaturvedi MM, Aggarwal BB. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med. 2010; 76(11): 1044-63, CrossRef.

Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997; 275(5297): 218-20, CrossRef.

Kroon PA, Iyer A, Chunduri P, Chan V, Brown L. The cardiovascular nutrapharmacology of resveratrol: Pharmacokinetics, molecular mechanisms and therapeutic potential. Curr Med Chem. 2010; 17(22): 2442-55, CrossRef.

Everitt AV, Rattan SIS, Le Couteur DG, De Cabo R. Calorie Restriction, Aging and Longevity. Berlin: Springer Nature; 2010, CrossRef.

Uriho A, Tang X, Le G, Yang S, Harimana Y, Ishimwe SP, et al. Effects of resveratrol on mitochondrial biogenesis and physiological diseas-es. Adv Tradit Med. 2020; 21(2): 1-14, CrossRef.

Heebøll S, Thomsen KL, Clouston A, Sundelin EI, Radko Y, Christensen LP, et al. Effect of resveratrol on experimental non-alcoholic steatohepatitis. Pharmacol Res. 2015; 95-96: 34-41, CrossRef.

Neuschwander-Tetri BA. Nonalcoholic steatohepatitis and the metabolic syndrome. Am J Med Sci. 2005; 330(6): 326-35, CrossRef.

Kopec KL, Burns D. Nonalcoholic fatty liver disease: A review of the spectrum of disease, diagnosis, and therapy. Nutr Clin Pract. 2011; 26(5): 565-76, CrossRef.

Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013; 10(11): 686-90, CrossRef.

Schindhelm RK, Diamant M, Dekker JM, Tushuizen ME, Teerlink T, Heine RJ. Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev. 2006; 22(6): 437-43, CrossRef.

Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology. 2010; 52(1): 79-104, CrossRef.

Chachay VS, Kirkpatrick CMJ, Hickman IJ, Ferguson M, Prins JB, Martin JH. Resveratrol - Pills to replace a healthy diet? Br J Clin Pharmacol. 2011; 72(1): 27-38, CrossRef.

Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444(7117): 337-42, CrossRef.

Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet. 2005; 39: 359-407, CrossRef.

Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science. 2003; 300(5622): 1140-2, CrossRef.

Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and dia-betes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003; 100(14): 8466-71, CrossRef.

Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005; 54(7): 1926-33, CrossRef.

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005; 434(7029): 113-8, CrossRef.

Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004; 73: 417-35, CrossRef.

Pyo IS, Yun S, Yoon YE, Choi JW, Lee SJ. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules. 2020; 25(20): 4649, CrossRef.

Zhou DD, Luo M, Huang SY, Saimaiti A, Shang A, Gan RY, et al. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid Med Cell Longev. 2021; 2021: 9932218, CrossRef.

Szekeres T, Fritzer-Szekeres M, Saiko P, Jäger W. Resveratrol and resveratrol analogues-structure-activity relationship. Pharm Res. 2010; 27(6): 1042-8, CrossRef.

Annaji M, Poudel I, Boddu SHS, Arnold RD, Tiwari AK, Babu RJ. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep. 2021; 4(2): e1353, CrossRef.

Liu X, Pei J, Li J, Zhu H, Zheng X, Zhang X, et al. Recent advances in resveratrol de-rivatives: Structural modifications and biological activities. Molecules. 2025; 30(4): 958, CrossRef.

Nowacka A, Śniegocka M, Smuczyński W, Liss S, Ziółkowska E, Bożiłow D, et al. The potential application of resveratrol and its derivatives in central nervous system tumors. Int J Mol Sci. 2024; 25(24): 13338, CrossRef.




DOI: https://doi.org/10.18585/inabj.v17i2.3486

Copyright (c) 2025 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                

 

 

The Prodia Education and Research Institute