Intermittent Exposure to Hypobaric Hypoxia Increases VEGF, HIF-1α, and Nrf-2 Expressions in Brain Tissue
Abstract
BACKGROUND: Hypoxia inducible factor-1α (HIF-1α), nuclear factor erythroid 2-related factor 2 (Nrf-2), and vascular endothelial growth factor (VEGF), play a crucial role as neuroprotective factors. Currently, there is a lack of studies examining the biomolecular responses of the brain to intermittent hypoxia resulting from various pressures. This study was conducted to investigate the physiological responses, histopathological features, and cellular adaptive responses in the brains of rats that were intermittently exposed to hypobaric hypoxic conditions.
METHODS: Thirty male Sprague Dawley rats were divided into six groups: a control group and five treatment groups exposed to hypobaric hypoxia. The treatment groups were placed in a hypobaric chamber simulating an altitude of 3,048 meters for 1 hour/day for 1, 7, 14, 21, and 28 days. After exposure, brain tissue was collected for histopathological analysis and protein quantification of HIF-1α, Nrf-2, cytoglobin (Cygb), neuroglobin (Ngb), VEGF, malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT).
RESULTS: In the brain, intermittent hypobaric hypoxia significantly increased HIF-1α expression (p=0.000) and its downstream proteins Cygb (p=0.000), and VEGF (p=0.001), with a peak at 14x IHH exposure compared to control. This was followed by a significant increase in Nrf-2 expression (p=0.000), SOD (p=0.000), Gpx (p=0.000), and CAT activity (p=0.000), indicating an adaptive antioxidant response. Conversely, MDA levels was decreased with prolonged exposure, suggesting reduced oxidative damage.
CONCLUSION: IHH elevates HIF-1α, Nrf-2, and oxidative stress markers, triggering an adaptive antioxidant response in the rat’s brains.
KEYWORDS: HIF-1α, intermittent hypobaric hypoxia, Nrf-2, oxidative stress
Full Text:
PDFReferences
Aerospace Medical Association; Aviation Safety Committee; Civil Aviation Subcommittee. Cabin cruising altitudes for regular transport aircraft. Aviat Space Environ Med. 2008; 79(4): 433-9, CrossRef.
ICAO. Operation of Aircraft: Annex 6 to the Convention on International Civil Aviation. ICAO. 2005, article.
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012; 148(3): 399-408, CrossRef.
Maiti P, Singh SB, Sharma AK, Muthuraju S, Banerjee PK, Ilavazhagan G. Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int. 2006; 49(8): 709-16, CrossRef.
Cheng L, Zhang H, Wu F, Liu Z, Cheng Y, Wang C. Role of Nrf2 and its activators in cardiocerebral vascular disease. Oxid Med Cell Longev. 2020; 2020: 4683943, CrossRef.
Layal K. Peran Nrf2 dalam patogenesis stres oksidatif dan inflamasi pada penyakit ginjal kronik. Syifa'MEDIKA. 2016; 7(1): 16-24, CrossRef.
Mahmood M, Mushtaq M, Malik A, Khurshid R, Aamir F, Javed A. Oxidative stress mediates the association between thyroid dysfunction and breast cancer. Indones Biomed J. 2023; 15(4): 303-9, CrossRef.
Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol. 2003; 23(24): 9361-74, CrossRef.
Widhiantara IG, Permatasari AAAP, Rosiana IW, Sutirtayasa IWP, Siswanto FM. Role of HIF-1, Siah-1 and SKN-1 in inducing adiposity for caenorhabditis elegans under hypoxic conditions. Indones Biomed J. 2020; 12(1): 51-6, CrossRef.
Chhabra V, Anand AS, Baidya AK, Malik SM, Kohli E, Reddy MPK. Hypobaric hypoxia induced renal damage is mediated by altering redox pathway. PLoS One. 2018; 13(7): e0195701, CrossRef.
Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: Good and evil. Genes Cancer. 2011; 2(12): 1117-33, CrossRef.
Kamga C, Krishnamurthy S, Shiva S. Myoglobin and mitochondria: A relationship bound by oxygen and nitric oxide. Nitric Oxide. 2012; 26(4): 251-8, CrossRef.
Siregar FM, Hardiany NS, Jusman SWA. Negative correlation between cytoglobin expression and intracellular ROS levels in human skin keloid fibroblasts. Indones Biomed J. 2019; 11(1): 48-51, CrossRef.
Pilmanis AA, Balldin UI, Fischer JR. Cognition effects of low-grade hypoxia. Aerospace medicine and human performance. 2016; 87(7): 596-603, CrossRef.
Heratika D, Kekalih A, Mulyawan W, Agustina A, Soemarko DS, Siagian M. The effect of the altitude zone on cognitive function for male pilots in indoctrination and aerophysiology training in 2019. Int J Appl Pharm. 2020: 12(Special 3): 12-4, CrossRef.
Bouak F, Vartanian O, Hofer K, Cheung B. Acute mild hypoxic hypoxia effects on cognitive and simulated aircraft pilot performance. Aerosp Med Hum Perform. 2018; 89(6): 526-35, CrossRef.
Dewi S, Sadikin M, Mulyawan W. Oxidative stress in the heart of rats exposed to acute intermittent hypobaric hypoxia. Ukr Biochem J. 2021; 93(3): 68-74, CrossRef.
Ekawati M, Mujihartini N, Jusuf AA, Dharmasetiawani N, Jusman SWA, Sadikin M. Altered expressions of endothelial junction protein of placental capillaries in premature infants with intraventricular hemorrhage. Med J Indones. 2016; 25(3): 143-50, CrossRef.
Ramadhani D, Suvifan VA, Purnami S, Rahajeng N, Lusiyanti Y, Wanandi SI, et al. Superoxide dismutase and glutathione peroxidase activities in a population exposed to high indoor radon concentration: a preliminary report. Free Radic Res. 2021; 55(11-12): 1094-103, CrossRef.
Tsai YW, Yang YR, Wang PS, Wang RY. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PloS one. 2011; 6(8): e24001, CrossRef.
Wittner M, Riha P. Transient hypobaric hypoxia improves spatial orientation in young rats. Physiol Res. 2005; 54(3): 335-40, CrossRef.
Mulyawan W. Analisis respons adaptasi jaringan otak pasca induksi hipoksia hipobarik intermitten pada tikus: kajian khusus terhadap ekspresi hypoxia inducible factor 1α [Dissertation]. Jakarta: Universitas Indonesia; 2012.
Farhan FS, Masengi AF, Herawati M, Mulyawan W, Jusman SWA, Sadikin M. Effect of hypobaric hypoxia induction on cognitive function and glutamate receptor in sprague-dawley rats. eJournal Kedokteran Indonesia. 2019; 6(3): 201-6, CrossRef.
Fitriana N, Iswanti FC, Sadikin M. The role of hypoxia-inducible factor in mycobacterium tuberculosis-infected macrophages. Mol Cell Biomed Sci. 2024; 8(1): 23-30, CrossRef.
Irfannuddin I. Metabolisme oksidatif dan peranan neuroglobin terhadap homeostasis oksigen di otak. Sriwijaya Journal of Medicine. 2019; 2(3): 211-20, CrossRef.
Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, et al. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci. 2010; 107(50): 21570-5, CrossRef.
Mudjihartini N, Saekhu M, Jusman SWA, Sadikin M. Kadar neuroglobin dan sitoglobin dalam plasma, cairan serebro spinalis, dan jaringan otak pasien strok hemoragik. Muhammadiyah Journal of Geriatric. 2022; 3(1): 1-8, CrossRef.
Sisein EA. Biochemistry of free radicals and antioxidants. Sch Acad J Biosci. 2014; 2(2): 110-8, article.
Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009; 20(7): 332-40, CrossRef.
Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006; 58(1): 87-114, CrossRef.
Jusman SA, Halim A. Oxidative stress in liver tissue of rat induced by chronic systemic hypoxia. Makara Journal of Health Research. 2010: 13(1): 34-8, CrossRef.
Catherine C, Ferdinal F. Pengaruh hipoksia sistemik kronik terhadap kadar malondialdehid (MDA) pada darah dan jaringan ginjal tikus Sprague Dawley. Tarumanagara Medical Journal. 2018; 1(1): 54-8, article.
Mudjihartini N, Widia S, Suyatna F, Sadikin M. Stres oksidatif otak tikus pada induksi hipoksia sistemik kronik. Neurona. 2017; 34(3): n.p, article.
Wardaya W, Mulyawan W, Jusman SWA, Sadikin M. Oxidative stress, hypoxia-inducible factor-1α, and nuclear factor-erythroid 2-related factor 2 in the hearts of rats exposed to intermittent hypobaric hypoxia. HAYATI J Biosci. 2024; 31(1): 39-47, CrossRef.
DOI: https://doi.org/10.18585/inabj.v17i2.3519
Copyright (c) 2025 The Prodia Education and Research Institute

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:





The Prodia Education and Research Institute