Immunomodulatory Effect of Dioscorea esculenta L. on NF-κB, TLR-4, TNF-α, and IL-10 Expressions in LPS-stimulated RAW 264.7 Mouse Macrophages

Ika Puspitaningrum, Muthi Ikawati, Nanang Fakhrudin, Arief Nurrochmad

Abstract


BACKGROUND: Gene expressions of toll-like receptor 4 (TLR)-4, nuclear factor-kappaB (NF-κB), tumor necrosis factor (TNF)-α, and interleukin (IL)-10 are known to have roles in the inflammatory process and affect the regulation of the immune system. A preliminary study showed that Dioscorea esculenta L. tuber has immunomodulatory activity against macrophage phagocytosis activity and lymphocyte proliferation. However, the immunomodulatory activity of aqueous extract (AE), polysaccharide fraction (PF), and non-polysaccharide fraction (NPF) of D. esculenta L. tubers on these gene expressions have not been elucidated well. Therefore, this study was performed to determine its immunomodulatory activity by utilizing RAW 264.7 cell culture induced by lipopolysaccharide (LPS).

METHODS: RAW 264.7 cells were stimulated with LPS at a concentration of 1 µg/mL for 30 minutes before incubation with non-toxic concentrations of AE, PF, NPF, positive control, and inulin at 25 and 50 µg/mL. TNF-α, IL-10, TLR-4, NF-κB, and β-actin expressions were evaluated using reverse transcription-polymerase chain reaction (RT-PCR) and were normalized with β-actin as an internal control. Triplicate experiments were performed throughout this study.

RESULTS: Treatment with 25 µg/mL NPF significantly decreased the expression of NF-κB, TLR-4, and TNF-α (p<0.05). In contrast, treatment of 25 and 50 µg/mL PF significantly decreased the NF-κB expression (p<0.05). Moreover, only treatment with 50 µg/mL AE exhibited a significant increase in IL-10 expression (p<0.05).

CONCLUSION: Treatment with D. esculenta L. tuber stimulated macrophage RAW 264.7 cells via NF-κB, TLR-4, TNF-α, and IL-10 expressions. NPF at 25 µg/mL has stronger immunomodulatory activity in reducing the expression of genes involved in the inflammatory process that plays a role in regulating the immune system.

KEYWORDS: Dioscorea esculenta L., Immunomodulator, IL-10, NF-κB, TLR-4, TNF-α, RAW 264.7 cell


Full Text:

PDF

References


Abbas A, Lichtman A, Pillai S. Cellular and Molecular Immunology. 10th ed. Philadelphia: Elsevier; 2022, article.

Erniati E, Ezraneti R. Aktivitas imunomodulator ekstrak rumput laut. Acta Aquat Aquat Sci J. 2020;7(2): 79, CrossRef.

Kalsum N, Sulaeman A, Setiawan B, Wibawan IWT. Efek propolis cair Trigona spp. terhadap respons imun tikus Sprague Dawley yang diinfeksi Sthapylococcus aureus. J Gizi dan Pangan. 2017;12(1): 23-30, CrossRef.

Baratawidjaja, K.G.; Rengganis I. Imunologi dasar. Vol. XII. Jakarta: Fakultas Kedokteran Universitas Indonesia; 2018.

Muniandy K, Gothai S, Badran KMH, Kumar SS, Esa NM, Arulselvan P. Suppression of proinflammatory cytokines and mediators in LPS-Induced RAW 264.7 macrophages by stem extract of Alternanthera sessilis via the inhibition of the NF-κB pathway. J Immunol Res. 2018; 2018: 3430684, CrossRef.

Paramita S. Imunonutrien : Pangan fungsional untuk meningkatkan daya tahan tubuh. Herb Med Community Univ Mulawarman. 2020; (March): 1-3, article.

Wahdaningsih S, Wahyuono S, Riyanto S, Murwanti R. Lymphocyte proliferation and nitric oxide-producing activities of lupeol isolated from red dragon fruit (Hylocereus polyrhizus) Extract. Mol Cell Biomed Sci. 2021; 5(1): 8-12, CrossRef.

Kanal Pengetahuan dan Informasi Fakultas Teknologi Pertanian Universitas Gadjah Mada. Apa itu Pangan Fungsional? [updated 2017 Oct 28; cited 2018 Jun 13]. Available from: kanalpengetahuan.tp.ugm.ac.id.

Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC, Bustea C, et al. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother. 2021; 133: 110959, CrossRef.

Martono Y, Apriliyani SA, Riyanto CA, Mutmainah, Kusmita L. Optimization of conventional and ultrasound assisted extraction of inulin from gembili tubers (Dioscorea esculenta L.) using response surface methodology (RSM). IOP Conf Ser Mater Sci Eng. 2019; 509(1): 1-8, CrossRef.

Sareu PL, Nurhaeni, Ridhay A, Mirzan M, Syamsuddin. Ekstraksi glukomanan dari umbi gembili (Dioscorea esculenta L.). KOVALEN J Ris Kim. 2021; 7(1): 51-8, CrossRef.

Andriani RD, Rahayu PP, Apriliyani MW. Antihyperglycemic activities of fermented milk enriched with gembili (Dioscorea esculenta). IOP Conf Ser Earth Environ Sci. 2020; 411(1): 1-7, CrossRef.

Winarti S, Harmayani E, Marsono Y, Pranoto Y. Pengaruh foaming pada pengeringan inulin umbi gembili (Dioscorea esculenta) terhadap karateristik fisiko-kimia. Agritech. 2013; 33(4): 424-32, article.

Zubaidah E, Akhadiana W. Comparative study of inulin extracts from dahlia, yam, and gembili tubers as prebiotic. Food Nutr Sci. 2013; 04(11): 8-12, CrossRef.

Redondo-Cuenca A, Herrera-Vázquez SE, Condezo-Hoyos L, Gómez-Ordóñez E, Rupérez P. Inulin extraction from common inulin-containing plant sources. Ind Crops Prod. 2021; 170: 113726, CrossRef.

Sujono TA, Kusumowati ITD, Munawaroh R. Aktivitas imunomodulator ekstrak metanol dan fraksi buah talok (Muntingia calabura L.) pada Sel RAW 264.7. JPSCR J Pharm Sci Clin Res. 2021; 6(2): 82, CrossRef.

Suriyaprom S, Srisai P, Intachaisri V, Kaewkod T, Pekkoh J, Desvaux M, et al. Antioxidant and anti-inflammatory activity on LPS-stimulated RAW 264.7 macrophage cells of white mulberry (Morus alba L.) leaf extracts. Molecules. 2023; 28(22): 4395, CrossRef.

Ikawati M, Kawaichi M, Oka C. Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells. PLoS One. 2018; 13(5): e0196628, CrossRef.

Temkov M, Petkova N, Denev P, Krastanov A. Characterization of inulin from Helianthus tuberosus L. obtained by different extraction methods - Comparative study. In: Food, Science, Engineering and Technology. Plovdiv: Scientific Works of University of Food Technologies; 2015. p. 461-4, article.

El-Kholy WM, Aamer RA, Ali ANA. Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt. Ann Agric Sci. 2020; 65(1): 59-67, CrossRef.

Riastri A, Putri DDP, Sa'adah M, Gani AP, Murwanti R. RAW 264.7 macrophage cell line: in vitro model for the evaluation of the immunomodulatory activity of Zingiberaceae. Trop J Nat Prod Res. 2023; 7(2): 2316-24, CrossRef.

Nordin NS, Keong YY, Tohid SFM, Zain ZNM, Hakim MN. In vitro Anti-inflammatory evaluation of 6-thioguanine and 6-hydroxy-2-mercaptopurine as a potential treatment for rheumatoid arthritis. Indones Biomed J. 2021; 13(4): 383-95, CrossRef.

Negara BFSP, Choi JS. Bifidobacterium lactis inhibits iNOS expression in LPS-stimulated RAW 264.7 macrophages. Indones Biomed J. 2022; 14(2): 199-205, CrossRef.

Hossen I, Kaiqi Z, Hua W, Junsong X, Mingquan H, Yanping C. Epigallocatechin gallate (EGCG) inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells via modulating nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) signaling pathway. Food Sci Nutr. 2023; 11(8): 4634-50, CrossRef.

Khatimah NG, Arozal W, Barinda AJ, Antarianto RD, Hardiany NS, Shimizu I, et al. Potential anti-senescence effect of extract from Andrographis paniculata herbal plant and its bioactive compounds: a systematic review. Mol Cell Biomed Sci. 2024; 8(3): 127-41, CrossRef.

Alexander AF, Kelsey I, Forbes H, Miller-Jensen K. Single-cell secretion analysis reveals a dual role for IL-10 in restraining and resolving the TLR4-induced inflammatory response. Cell Rep. 2021; 36(12): 109728, CrossRef.

Kwarta CP, Wibowo H, Khaedir Y, Rengganis I, Nuraeni HS. Interleukin-13, interleukin-10, interferon-g and IDO production in response to home dust mite in allergic asthma. Indones Biomed J. 2019; 11(2): 194-9, CrossRef.

Segeritz CP, Vallier L. Cell culture: growing cells as model systems in vitro. Basic Science Methods for Clinical Researchers. 2017. 151-172, CrossRef.

Haryoto H, Harsono ED. Cytotoxic activities of ethanol extract, nonpolar, semipolar, and polar fractions of Dioscorea esculenta L. on MCF7 cancer cell. J Nutraceuticals Herb Med. 2019; 2(1): 12-9, article.

Dey P, Ray S, Kumar T. Immunomodulatory activities and phytochemical characterisation of the methanolic extract of Dioscorea alata aerial tuber. J Funct Foods. 2016; 23: 315-28, CrossRef.

Puspitasari FA, Kartikasari NB, Mutiyastika S. Effect of different solvents in the extraction process of kelor (Moringa oleifera) leaves on bioactive Resources and Phenolic Acid Content. International Conference on Sustainable Health Promotion/ 2023; 3(1): 167-78, article.

Lee HJ, Watanabe B, Nakayasu M, Onjo M, Sugimoto Y, Mizutani M. Novel steroidal saponins from Dioscorea esculenta (Togedokoro). Biosci Biotechnol Biochem. 2017; 81(12): 2253-60, CrossRef.

Guoying L, Li L, Siyue Y, Lei L, Guangliang C. Total saponin of Dioscorea collettii attenuates MSU crystal-induced inflammation by inhibiting the activation of the TLR4 / NF-κB signaling pathway. Evidence-based Complement Altern Med. 2021; 2021: 1-11, CrossRef.

Karimaa A. Uji in vitro senyawa antikanker SA 2014 terhadap aktivitas fagositosis sel makrofag (Mus musculus). J Sains dan Seni ITS. 2019; 7(2): E27-33, CrossRef.

Syari JP, Djohan H, Tumpuk S. Efek ekstrak metanol daun pucuk merah terhadap kadar glukosa darah. J Lab Khatulistiwa. 2022; 6(1): 24-30, CrossRef.

Salma N, Paendong J, Momuat LI, Togubu S. Antihyperglycemic from antihiperglikemik ekstrak tumbuhan suruhan (Peperomia pellucida [L.] Kunth) terhadap tikus Wistar (Rattus norvegicus L.) yang diinduksi sukrosa. J Ilm Sains. 2013; 13(2): 116-23, CrossRef.

Kim H, Lee S, Choi B, Lee D. Immune-enhancing effects of Echinacea purpurea extracts on RAW 264.7 cells via TLR4-mediated NF-κB and MAPKs pathways. J Physiol Pathol Korean Med. 2023; 37(5): 156-64, CrossRef.

Tawfick MM, Xie H, Zhao C, Shao P, Farag MA. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int J Biol Macromol. 2022; 208: 948-61, CrossRef.

Wang Z, Zhang X, Zhu L, Yang X, He F, Wang T, et al. Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. Int Immunopharmacol. 2020; 78: 106062, CrossRef.




DOI: https://doi.org/10.18585/inabj.v17i3.3630

Copyright (c) 2025 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

                     

          

 

 

The Prodia Education and Research Institute