Antidiabetic Activities of Muntingia Calabura L. Leaves Water Extract in Type 2 Diabetes Mellitus Animal Models

Widhya Aligita, Elis Susilawati, Ika Kurnia Sukmawati, Lusi Holidayanti, Jejen Riswanti

Abstract


BACKGROUND: Diabetes Mellitus (DM) is a heterogeneous group of disorders characterized by increasing blood glucose levels caused by insufficiency of insulin hormone production and activities. There are significant increases in DM case every year in Indonesia, as a consequent, alternative and better drug is needed to be developed. One of the plants that were often used as traditional medicine for DM in Indonesia was Muntingia carabula L. (kersen) leaf. The aim of this research was to evaluate the antidiabetes activity of M. carabula leaves.

METHODS: This study was conducted in vivo by evaluating the antidiabetic activity of M. carabula leaf water extract on two animal models, those are insulin deficiency and insulin resistant model animal. The insulin deficiency animal model was developed by aloxan administration at dose of 50 mg/Kg body weight (bw) intravenously. While the insulin resistance animal model was developed by lipid emulsion administration at dose of 0.42 mL/20 grams bw orally. Both groups were randomly devided into 6 groups, which are negative control group, positive control group, standard drug group (glybenclamide 0.65 mg/Kg bw or  metformin 135 mg/Kg bw), and extract groups at dose of 100, 200 and 400 mg/Kg bw. Parameters which were evaluated are fasting blood glucose (FBG) levels for insulin deficiency models and values of constant of insulin tolerance (KITT) for insulin resistant models.

RESULTS: In insulin deficient model group, administration of glibenclamide lower the FBG by 43%, furthermore, the extract of M. calabura at doses of 100, 200 and 400 mg/Kg bw also lower the FBG by 13%, 22% and 29%, subsequently. In insulin resistant models, metformin increased the value of KITT from less than 0.5 to 2.91, and administration of the extract at doses of 400, 200 and 100 mg/Kg bw also increased the KITT value to 2.31, 1.57, 1.13, respectively.

CONCLUSION: The conclusion was M. carabula leaves water extract with dose of 400 mg/Kg bw had the antidiabetic activities with mechanisms to lower blood glucose level, regenerate pancreatic β cells, and increase insulin sensitivity.

KEYWORDS: diabetes mellitus, kersen leaves, Muntingia calabura L., insulin deficiency, insulin resistance


Full Text:

PDF

References


American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2015; 38 (Suppl.1): S8-16, CrossRef.

DiPiro JT, Wells BG, Schwinghammer TL, DiPiro CV. Pharmacotherapy Handbook. 7th edition. New York: McGraw-Hill; 2009, NLMID.

Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hiperinsulinemia. Diabetes Care. 2008; 31 (Suppl.2): S262-8, CrossRef.

International Diabetes Federation (IDF). IDF Diabetes Atlas. 6th Edition. Brussels: International Diabetes Federation; 2013, article.

Badan Penelitian dan Pengembangan Kesehatan Kementrian Kesehatan Republik Indonesia. Riset Kesehatan Dasar (RISKESDAS) Tahun 2007. Jakarta: Kementrian Kesehatan RI; 2007, article.

Badan Penelitian dan Pengembangan Kesehatan Kementrian Kesehatan Republik Indonesia. Riset Kesehatan Dasar (RISKESDAS) Tahun 2013. Jakarta: Kementrian Kesehatan RI; 2013, article.

Riaz S. Diabetes mellitus. Sci Res Essays. 2009; 4: 367-73, article.

Katzung BG, Masters SB, Trevor AJ. Basic and Clinical Pharmacology. 12th edition. New York: McGraw-Hill Medical; 2012.

Prameswari OM, Widjarnako SB. Uji efek ekstrak air daun pandan wangi terhadap penurunan kadar glukosa darah dan hispatologi tikus diabetes mellitus. Jurnal Pangan dan Agroindustri. 2014; 2: 16-27.

Sujono TA, Wahyuni AS. Pengaruh decocta daun lidah buaya (Aloe vera L.) terhadap kadar glukosa darah kelinci yang dibebani glukosa. Jurnal Penelitian Sains dan Teknologi. 2005; 6: 26-34, article.

Zakaria ZA, Mustapha S, Sulaiman MR, Jais AMM, Somchit MN, Abdullah FC. The antinociceptive action of aqueous extract from Muntingia calabura leaves: the role of opioid receptors. Med Princ Pracyt. 2007; 16: 130-6, CrossRef.

Youngson R. Antioxidants Vitamins C & E for Health. London: Sheldon Press; 1998.

Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of oxidative stress during diabetes mellitus. J Biomark. 2013; 2013: 378790, CrossRef.

Halliwell B, Gutteridge JM. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med. 1995; 18: 125-6, CrossRef.

Squadriato GL, Peyor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite and carbon dioxide. Free Radical Bio Med. 1998; 25: 392-403, CrossRef.

Aruna SM, Bodke YD, Chandrashekar A. Antioxidant and in vivo anti-hyperglycemic activity of Muntingia calabura leaves extracts. Der Pharmacia Lettre. 2013; 5: 427-35, article.

Sukandar EY, Elfahmi, Nurdewi. Pengaruh pemberian ekstrak air daun jati belanda (guazuma ulmifolia lamk.) terhadap kadar lipid darah pada tikus jantan. Jurnal Kedokteran Maranatha. 2009; 8: 102-12, article.

Sukandar EY, Sukrasno, Fitri MA. Aktivitas antidiabetika ekstrak etanol herba sambiloto (Andrographis paniculata Nees (Acanthaceae)). J Mat Sains. 2001; 6: 13-20.

Ai J, Wang N, Yang M, Du ZM, Zhang YC, Yang BF. Development of wistar rat model of insulin resistance. World J Gastroenterol. 2005; 11: 3675-9, CrossRef.

Lian JH, Xiang YQ, Guo L, Hu WR, Gong BQ. The use of high-fat/carbohydrate diet-fed and streptozotocin-treated mice as a suitable animal model of type 2 diabetes mellitus. Scand J Lab Anim Sci. 2007; 34: 21-9, article.

Etuk EU. Animals models for studying diabetes mellitus. Agric Biol J N Am. 2010; 1: 130-4, article.

Dhanesha N, Joharapurkar A, Shah G, Dhote V, Kshirsagar S, Bahekar R, et al. Exendin-4 ameliorates diabetic symptoms through activation of glucokinase. J Diabetes. 2012; 4: 369-77, CrossRef.

Dunn JS, Sheehan HL, Mclethie NGB. Necrosis of islets of langerhans produced experimentally. Lancet. 1943; 1: 484-7, CrossRef.

Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001; 50: 536-46, PMID.

Lenzen S. The mechanisms of alloxan and streptozotocin-induced diabetes. Diabetologia. 2008; 51: 216-26, CrossRef.

Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab. 2015; 12: 60, CrossRef.




DOI: https://doi.org/10.18585/inabj.v10i2.405

Copyright (c) 2018 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Indexed by:

                  

               

                

 

 

The Prodia Education and Research Institute