sodA and gap Genes as Markers for The Identification of Staphylococcus capitis

Rininta Firdaus, Hege Hartz Jartun, Miriam Khider

Abstract


BACKGROUND: Rapid and accurate identification of Staphylococcus capitis is required to provide a better prognosis for endocarditis patients and tackle the emergence of multidrug resistant strains of the bacteria in hospitals. The current study was aimed to develop polymerase chain reaction (PCR) assay for specific identification of S. capitis using sodA and gap genes as markers.

METHODS: Five sequences of sodA and sixteen sequences of gap registered in GeneBank were analysed using bioinformatic tools. PCR primers were designed based on the conserved and specific regions of sodA and gap. Four clinical isolates of S. capitis (named no. 56-59) and six reference strains of coagulase-negative staphylococci (CoNS) species including S. epidermidis ATCC 35984, S. epidermidis 48951I/09, S. lugdunensis 44987/09, S. sciuri 109645I/08, S. warneri 135612/09, S. hominis 114202/08 were used to validate the conventional PCR system.

RESULTS: The current PCR system only amplified the DNA template of S. capitis. Current primers specifically targeted S. capitis as the agarose images only showed bands from S. capitis samples.

CONCLUSION: The sodA and gap genes might serve as effective markers for identification of S. capitis using conventional PCR. The PCR assay in the current study was able to identify five clinical isolates of S. capitis accurately without mispriming, misamplification and misidentification. The PCR system was also able to discriminate other CoNS including S. epidermidis, S. lugdunensis, S. sciuri, S. warneri and S. hominis.

KEYWORDS: Staphylococcus, S. capitis, sodA, gap, PCR


Full Text:

PDF SUPPLEMENT

References


Humphreys H. Staphylococcus. In: Greenwood D, Slack R, Barer M, Irving W, editors. Medical Microbiology. London: Churchill Livingstone; 2012. p. 176-82, CrossRef.

Maggs AF, Pennington TH. Temporal study of staphylococcal species on the skin of human subjects in isolation and clonal analysis of Staphylococcus capitis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Clin Microbiol. 1989; 27: 2627-32, PMID.

Al Hennawi HET, Mahdi EM, Memish ZA. Native valve Staphylococcus capitis infective endocarditis: a mini review. Infection. 2019; [nv]: 1-3, CrossRef.

Caputo GM, Archer GL, Calderwood SB, DiNubile MJ, Karchmer AW. Native valve endocarditis due to coagulase-negative staphylococci. Clinical and microbiologic features. Am J Med. 1987; 83: 619-25, CrossRef.

Etienne J, Eykyn SJ. Increase in native valve endocarditis caused by coagulase negative staphylococci: an Anglo-French clinical and microbiological study. Br Heart J. 1990; 64: 381-4, CrossRef.

Mainardi JL, Lortholary O, Buu-Hoi A, Desplaces N, Goldstein F, Gutmann L, et al. Native valve endocarditis caused by Staphylococcus capitis. Eur J Clin Microbiol Infect Dis. 1993; 12: 789-91, CrossRef.

Chu VH, Cabell CH, Abrutyn E, Corey GR, Hoen B, Miro JM, et al. Native valve endocarditis due to coagulase-negative staphylococci: report of 99 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis. 2004; 39: 1527-30, CrossRef.

Chu VH, Woods CW, Miro JM, Hoen B, Cabell CH, Pappas PA, et al. Emergence of coagulase-negative staphylococci as a cause of native valve endocarditis. Clin Infect Dis. 2008; 46: 232-42, CrossRef.

Butin M, Rasigade JP, Martins-Simoes P, Meugnier H, Lemriss H, Goering RV, et al. Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units. Clin Microbiol Infect. 2016; 22: 46-52, CrossRef.

Rasigade JP, Raulin O, Picaud JC, Tellini C, Bes M, Grando J, et al. Methicillin-resistant Staphylococcus capitis with reduced vancomycin susceptibility causes late-onset sepsis in intensive care neonates. PLoS One. 2012; 7: e31548, CrossRef.

Mendoza M, Meugnier H, Bes M, Etienne J, Freney J. Identification of Staphylococcus species by 16S-23S rDNA intergenic spacer PCR analysis. Int J Syst Bacteriol. 1998; 48: 1049-55,

Becker K, Harmsen D, Mellmann A, Meier C, Schumann P, Peters G, et al. Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol. 2004; 42: 4988-95, CrossRef.

Gribaldo S, Cookson B, Saunders N, Marples R, Stanley J. Rapid identification by specific PCR of coagulase-negative staphylococcal species important in hospital infection. J Med Microbiol. 1997; 46: 45-53, CrossRef.

Skow A, Mangold KA, Tajuddin M, Huntington A, Fritz B, Thomson RB Jr., et al. Species-level identification of staphylococcal isolates by real-time PCR and melt curve analysis. J Clin Microbiol. 2005; 43: 2876-80, CrossRef.

Kwok AY, Chow AW. Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Int J Syst Evol Microbiol. 2003; 53: 87-92, CrossRef.

Kwok AY, Su SC, Reynolds RP, Bay SJ, Av-Gay Y, Dovichi NJ, et al. Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol. 1999; 49: 1181-92, CrossRef.

Goh SH, Santucci Z, Kloos WE, Faltyn M, George CG, Driedger D, et al. Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin Microbiol. 1997; 35: 3116-21, PMID.

Poyart C, Quesne G, Boumaila C, Trieu-Cuot P. Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol. 2001; 39: 4296- 301, CrossRef.

Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, et al. Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol. 2001; 39: 2541-7, CrossRef.

Drancourt M, Raoult D. rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol. 2002; 40: 1333-8, CrossRef.

Mellmann A, Becker K, von Eiff C, Keckevoet U, Schumann P, Harmsen D. Sequencing and staphylococci identification. Emerg Infect Dis. 2006; 12: 333-6, CrossRef.

Shah MM, Iihara H, Noda M, Song SX, Nhung PH, Ohkusu K, et al. dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int J Syst Evol Microbiol. 2007; 57: 25-30, CrossRef.

Ghebremedhin B, Layer F, Konig W, Konig B. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol. 2008; 46: 1019-25, CrossRef.

De Paulis AN, Predari SC, Chazarreta CD, Santoianni JE. Five-test simple scheme for species-level identification of clinically significant coagulase-negative staphylococci. J Clin Microbiol. 2003; 41: 1219-24, CrossRef.

Kloos WE, Bannerman TL. Staphylococcus and micrococcus In: Murray PR, Barron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. Manual of Clinical Microbiology. 6th ed. Washington, D.C.: ASM Press; 1995. p.264-82, NLMID.

Antiabong JF, Ngoepe MG, Abechi AS. Semi-quantitative digital analysis of polymerase chain reaction-electrophoresis gel: Potential applications in low-income veterinary laboratories. Vet World. 2016; 9: 935-9, CrossRef.

Lingappa JR, Al-Rabeah AM, Hajjeh R, Mustafa T, Fatani A, AlBassam T, et al. Serogroup W-135 meningococcal disease during the Hajj, 2000. Emerging Infectious Diseases. 2003; 9: 665-71, CrossRef.




DOI: https://doi.org/10.18585/inabj.v11i3.891

Indexed by:

                 

                  

               

     

 

The Prodia Education and Research Institute