The Search for Biomarkers in Alzheimer's Disease

Anna Meiliana, Andi Wijaya

Abstract


BACKGROUND: As population demographic shift and the number of individuals with Alzheimer Disease (AD) continue to increase, the challenge is to develop targeted, effective treatments and our ability to recognize early symptoms. In view of this, the need for specific AD biomarker is crucial.

CONTENT: In recent years it has become evident that CSF concentrations of some brain-specific proteins are related to underlying disease pathogenesis and may therefore aid clinical investigation. Among several, we have focused on three candidates that have been suggested to fulfil the requirements for biomarkers of AD: β-amyloid 42 (Aβ42), total Tau (T-tau) and tau phosphorylated at various epitopes (P-tau). An increasing number of studies suggest that supplementary use of these CSF markers, preferably in combination, adds to the accuracy of an AD diagnosis. More recently visinin – like protein (VLP-1), a marker for neuronal cell injury has been studied. CSF VLP-1 concentrations were 50% higher in AD patients than in the control population.

SUMMARY: The number of studies aimed at the identification of new biomarkers for AD is expected to increase rapidly, not only because of the increasing insights into the pathological mechanisms underlying this disease, but also because new therapies have been developed or are under consideration now, which warrant an early and specific diagnosis for effective treatment of the patients.

KEYWORDS: dementia, amyloid plaque, neurofibrillary tangels, amyloid β-peptide 42 (Aβ42), total tau (T-tau), phosphorylated tau (P-tau), visinin–like protein 1 (VLP-1)

 


Full Text:

PDF

References


Cummings JL. Alzheimer’s disease. N Engl J Med. 2004; 351: 56-67, CrossRef.

Vas CJ. Alzheimer’s disease: the brain killer. Geneva: World Health Organization; 2001.

Mount C, Downtown C. Alzheimer disease: progress or profit? Nat Med. 2006; 12: 780-4, CrossRef.

Mandavilli A. The amyloid code. Nat Med. 2006; 12: 747-9, CrossRef.

Kins S, Beyreuther K. Teasing out the tangles. Nat Med. 2006; 12: 764-5, CrossRef.

Rozemuller JM, Eikelenboom P, Stam FC. Role of microglia in plaque formation in senile dementia of the Alzheimer type. An immunohistochemical study. Virchows Arch B Cell Pathol. 1986; 51: 247-54, CrossRef.

Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006; 12: 1005-15, PMID.

Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997; 23: 134-47, CrossRef.

McGeer PL, Rogers J, McGeer EG. Inflammation, antiinflammatory agents and Alzheimer disease: the last 12 years. J Alzheimers Dis. 2006; 9: 271-6, PMID.

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984; 34: 939-44, CrossRef.

Hui H, Lee AE. Clinical criteria for dementia subtypes. In: Qizilbash N, Schneider L, Brodaty H, eds. Evidencebased dementia practice. Oxford, England: Blackwell Science; 2002. p.106-19, NLMID.

Gearing M, Mirra SS, Hedreen JC, Sumi SM, Hansen LA, Heyman A. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part X. Neuropathology confirmation of the clinical diagnosis of Alzheimer's disease. Neurology. 1995; 45: 461-6, CrossRef.

Chong MS, Sahadevan S. Preclinical Alzheimer’s disease: diagnosis and prediction of progression. Lancet Neurol. 2005; 4: 576-9, CrossRef.

Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006; 5: 228-34, CrossRef.

Ferri CP, Prince CM, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005; 366: 2112-7, CrossRef.

Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci. 2003; 26: 81-104, CrossRef.

Mortimer JA, Snowdon DA, Markesbery WR. Head circumference, education and risk of dementia: findings from the Nun Study. J Clin Exp Neuropsychol. 2003; 25: 671-9, CrossRef.

Jellinger KA. Head injury and dementia. Curr Opin Neurol. 2004; 17: 719-23, CrossRef.

Luchsinger JA, Mayeux R. Dietary factors and Alzheimer’s disease. Lancet Neurol. 2004; 3: 579-87, CrossRef.

Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006; 63: 168-74, CrossRef.

Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991; 349: 704-6, CrossRef.

Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995; 375: 754-60, CrossRef.

Levy-Lahad E, Wasco W, Poorkaj P, Romano D, Oshima J, Pettingell W,et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995; 269: 973-77, CrossRef.

Harvey RJ, Skelton-Robinson M, Rossor MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003; 74: 1206-9, CrossRef.

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993; 261: 921-3, CrossRef.

Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet. 1993; 342: 697-9, CrossRef.

Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA. 1997; 278: 1349-56, CrossRef.

Meyer MR, Tschanz JT, Norton MC, et al. ApoE genotype predicts when–not whether–one is predisposed to develop Alzheimer’s disease. Nature Genetics. 1998; 19: 321-2, PMID.

Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994; 17: 525-30, CrossRef.

Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA. 2000; 97: 2892-7, CrossRef.

Prince JA, Zetterberg H, Andreasen N, Marcusson J, Blennow K. APOE epsilon4 allele is associated with reduced cerebrospinal fl uid levels of Abeta42. Neurology. 2004; 62: 2116-8, CrossRef.

Raber J, Huang Y, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging. 2004; 25: 641-50, CrossRef.

Blennow K, de Lean MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006; 368: 387-403, CrossRef.

Mattson MP. Pathways towards and away from alzheimer’s disease. Nature. 2004; 430: 631-9, CrossRef.

Selkoe DJ. Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J Clin Invest. 2002; 110: 1375-81, CrossRef.

Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002; 297: 353-6, CrossRef.

Selkoe D, Kopan R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003; 26: 565-97, CrossRef.

Shen J, Kelleher RJ. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci USA. 2007; 104: 403-9, CrossRef.

Hardy J, Cullen K. Amyloid at the blood vessel wall. Nat Med. 2006; 12: 756-7, CrossRef.

Xu F, Davis J, Miao J, Previti ML, Romanov G, Ziegler K, et al. Protease nexin-2/amyloid betaprotein precursor limits cerebral thrombosis. Proc Natl Acad Sci USA. 2005; 102: 18135-40, CrossRef.

Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE. Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fl uid drainage pathways in Alzheimer's disease. Am J Pathol. 1999; 153: 725-33, CrossRef.

Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998; 95: 6448-53, CrossRef.

Dotti CG, De Strooper B. Alzheimer’s dementia by circulation disorders: when trees hide the forest. Nat Cell Biol. 2009; 11: 114-6, CrossRef.

Bell RD, Deane R, Chow N, Long X, Sagare A, Singh I, et al. SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol. 2009; 11: 143-53, CrossRef.

Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest. 2000; 106: 1489-99, CrossRef.

Niwa K, Younkin L, Ebeling C, Turner SK, Westaway D, Younkin S, et al. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci USA. 2000; 97: 9735-40, CrossRef.

de la Torre JC. Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer's pathogenesis. Neurobiol Aging. 2000; 21: 331-42, CrossRef.

Ladecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5: 347-60, CrossRef.

Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57: 178-201, CrossRef.

Smith EE. Greenberg SM. β-Amyloid, blood vessels, and brain function. Stroke. 2009; 40: 2601-6, CrossRef.

Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997; 77: 1081-132, PMID.

Kimberly WT, Zheng JB, Guénette SY, Selkoe DJ. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem. 2001; 276: 40288-92, CrossRef.

Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid beta-protein similar to that in senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 APP mutations linked to familial Alzheimer’s disease. Nature Med. 1996; 2: 864-70, CrossRef.

Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci. 1999; 2: 271-6, PMID.

Chan SL, Furukawa K, Mattson MP. Presenilins APP in neuritic and synaptic plasticity: implications fot the pathogenesis of Alzheimer’s disease. Neuromolecular Med. 2002; 2: 167-96, CrossRef.

Ihara Y, Nukina N, Miura R, Ogawara M. Phosphorylated tau protein is integrated into pairedhelical fi laments in Alzheimer’s disease. J Biochem. 1986; 99: 1807-10, PMID.

Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA. 1986; 83: 4044-8, CrossRef.

Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C. Reconstitution of gamma-secretase activity. Nat Cell Biol. 2003; 5: 486-8, CrossRef.

Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature. 2000; 407: 48-54, CrossRef.

Chung HM, Struhl G. Nicastrin is required for Presenilinmediated transmembrane cleavage in Drosophila. Nat Cell Biol. 2001; 3: 1129-32, CrossRef.

De Strooper B, Annaert W, Annaert W, Cupers P, Saftig P, Craessaerts K, et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999; 398: 518-22, CrossRef.

Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J, et al. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell. 2002; 3: 85-97, CrossRef.

Goutte C, Tsunozaki M, Hale VA, Priess JR. APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc Natl Sci USA. 2002; 99: 775-9, CrossRef.

Takasugi N, Tomita T, Hayashi I. The role of presenilin cofactors in the gamma-secretase complex. Nature 2003; 422: 438-41, CrossRef.

Takashima A, Shimojo M, Wolozin B. The players on the γ-secretase team. Nat Med 2006; 12: 766-7, CrossRef.

Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, et al Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 2008; 14: 723-30, CrossRef.

St George-Hyslop P, Haass C. Regulatory RNA goes awry in alzheimer’s disease. Nat Med 2008; 14: 711-2, CrossRef.

Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000; 33: 95-130, CrossRef.

Ballatore C, Lee VMY, Trojanowski JQ. Tau-mediated neurodegeneration in alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007; 8: 663-72, CrossRef.

Lee G, Neve RL, Kosik KS. The microtubule binding domain of tau protein. Neuron. 1989; 2: 1615-24, CrossRef.

Kampers T, Pangalos M, Geerts H, Wiech H, Mandelkow E. Assembly of paired helical filaments from mouse tau: implications for the neurofi brillary pathology in transgenic mouse models for Alzheimer’s disease. FEBS Lett. 1999; 451: 39-44, CrossRef.

Takashima A, Murayama M, Murayama O, Kohno T, Honda T, Yasutake K, et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc Natl Acad Sci USA. 1998; 95: 9637-41, CrossRef.

Lee G. Tau and src family tyrosine kinases. Biochim Biophys Acta. 2005; 1739: 323-30, CrossRef.

Brandt R, Leger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol. 1995; 131: 1327-40, CrossRef.

Maas T, Eidenmuller J, Brandt R. Interaction of tau with the neural membrane cortex is egulated by phosphorylation at sites that are modifi ed in paired helical fi laments. J Biol Chem. 2000; 275: 15733-40, CrossRef.

Kuret J, Congdon EE, Li G, Yin H, Yu X, Zhong Q. Evaluating triggers and enhancers of tau fi brillization. Microsc Res Tech. 2005; 67: 141-55, CrossRef.

Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature Rev Drug Discov. 2007; 6: 464-79, CrossRef.

Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nature Med 2004; 5: S18-25, CrossRef.

Moreira PI, Smith MA, Zhu X, Nunomura A, Castellani RJ, Perry G. Oxidative stress and neurodegeneration. Ann NY Acad Sci 2005; 1043: 545-52, CrossRef.

King ME, Kan HM, Baas PW, Erisir A, Glabe CG, Bloom GS. Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid. J Cell Biol. 2006; 175: 541-6, CrossRef.

Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is essential to β-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA. 2002; 99: 6364-9, CrossRef.

Liu Q, Lee HG, Honda K, Siedlak SL, Harris PLR, Cash AD, et al. Tau modifiers as therapeutic targets for Alzheimer’s disease. Biochim Biophys Acta 2005; 1739: 211–215. CrossRef.

Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nature Med. 2004; 10: 1055-63, CrossRef.

Trojanowski JQ, Mattson MP. Overview of protein aggregation in single, double, and tripleneurodegenerative brain amyloidoses. Neuromolecular Med. 2003; 4: 1-6, CrossRef.

Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992; 42: 631-9, CrossRef.

Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimertype pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology. 1992; 42: 1681-8, CrossRef.

Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006; 443: 787-95, CrossRef.

Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001; 60: 759-67, PMID.

Pratico D, Uryu K, Leight S, Trojanoswki J Q, Lee VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001; 21: 4183-7, CrossRef.

Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet. 2004; 13: 1225-40, CrossRef.

Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, et al. β-Site APP cleaving mediated by stress-activated protein kinases pathways. J Neurochem. 2005; 92: 628-36, CrossRef.

Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis. 2004; 6: 659-71, PMID.

Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, et al. Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging. 2006; 27: 918-25, CrossRef.

Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, et al. Nicastrin, presenilin, APH-1, and PEN-2 form active gammasecretase complexes in mitochondria. J Biol Chem. 2004; 279: 51654-60, CrossRef.

Leissring MA, Farris W, Wu X, Christodoulou DC, Haigis MC, Guarente L, et al. Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochem J. 2004; 383: 439-46, CrossRef.

Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K, Johnson KA, et al. Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem. 2006; 281: 29096-104, CrossRef.

Sanz-Blasco S, Valero RA, Rodriguez-Crespo I, Villalobos C, Nunez L. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. Plos ONE. 2008; 3: e2718, CrossRef.

Starkov AA, Beal FM. Portal to alzheimer’s disease. Nat Med. 2008; 14: 1020-1, CrossRef.

Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, et al. NADPH Osidase-derived Reactive Oxygen Species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci. 2005; 25: 1769-77, CrossRef.

Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000; 21: 383-421, CrossRef.

Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA. 2002; 99: 10837-42, CrossRef.

Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, et al. Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Inves.t 2006; 116: 3060-9, CrossRef.

Das P, Golde T. Dysfunction of TGF-β signaling in alzheimer’s disease. J Clin Invest. 2006; 116: 2855-7, CrossRef.

Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease: A double-edged sword. Neuron. 2002; 35: 419-32, CrossRef.

Glabe CC. Amyloid accumulation and pathogensis of Alzheimer’s disease: signifi cance of monomeric, oligomeric and fi brillar Abeta. Subcell Biochem. 2005; 38: 167-77, CrossRef.

Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003; 300: 486-9, CrossRef.

Jarvik GP, Wijsman EM, Kukull WA, Schellenberg GD, Yu C, Larson EB. Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease: A case-control study. Neurology. 1995; 45: 1092-6, CrossRef.

Kuo YM, Emmerling MR, Bisgaier CL, Essenburg AD, Lampert HC, Drumm D, et al. Elevated lowdensity lipoprotein in Alzheimer’s disease correlates with brain Aβ1-42 levels. Biochem Biophys Res Commun. 1998; 252: 711-5, CrossRef.

Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 2007; 57: 1439-43, CrossRef.

Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet 2000; 356: 1627-31, CrossRef.

Raffai RL, Weisgraber KH. Cholesterol: from heart attacks to alzheimer’s disease. J Lipid Res. 2003; 44: 1423-30, CrossRef.

Bodovitz S, Klein WL. Cholesterol modulates β-secretase cleavage of amyloid precursor protein. J Biol Chem. 1996; 271: 4436-40, CrossRef.

Lee SJ, Liyanage U, Bickel PE, Xia W, Lansbury Jr. PT, Kosik KS. A detergent-insoluble membrane compartment contains Aβ in vivo. Nat Med. 1998; 4: 730-4, CrossRef.

Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T, Younkin LH, et al. Cholesteroldependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis. 2002; 9: 11–23, CrossRef.

Yanagisawa K, Matsuzaki K. Cholesterol-dependent aggregation of amyloid β-protein. Ann NY Acad Sci. 2002; 977: 384-6, CrossRef.

Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, et al. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid b at the blood-brain and blood-cerebrospinal fl uid barriers. Proc Natl Acad Sci USA. 1996; 93: 4229-34, CrossRef.

Bell RD, Sagaare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, et al. Transport pathways for clearance of human Alzheimer’s amyloid b-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab. 2007; 27: 909-918, CrossRef.

Burns M, Gaynor K, Olm V, Mercken M, LaFrancois J, Wang L, et al. Presenilin redistribution associated with aberrant cholesterol transport enhances b-amyloid production in vivo. J Neurosci. 2003; 23: 5645-9, CrossRef.

Shie FS, Jin LW, Cook DG, Leverenz JB, LeBoeuf RC. Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport. 2002; 213: 455-9, CrossRef.

Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000; 7: 321-31, CrossRef.

Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, et al. Simvastatin strongly reduces levels of Alzheimer’s disease b-amyloid peptides Ab42 and Ab40 in vitro and in vivo. Proc Natl Acad Sci USA. 2001; 98: 5856-61, CrossRef.

Kojro E, Gimple G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the a-secretase ADAM 10. Proc Natl Acad Sci USA. 2001; 98: 5815-20, CrossRef.

Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of b-amyloid in hippocampal neurons. Proc Natl Acad Sci USA. 1998; 95: 6460-4, CrossRef.

Buxbaum JD, Geoghagan NS, Friedhoff LT. Cholesterol depletion with physiological concentrations of a statin decreases the formation of the Alzheimer amyloid Abeta peptide. J Alzheimer’s Dis. 2001; 3: 221-9, PMID.

Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J Cell Biol. 2003; 160: 113-23, CrossRef.

Hirsch-Reinshagen V, Wellington CL. Cholesterol metabolism, apolipoprotein E, adenosine triphosphate-binding cassette transporters, and alzheimer’s disease. Curr Opin Lipidol. 2007; 18: 325-32, CrossRef.

Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol. 2001; 12: 105-12, CrossRef.

Björkhem I, Lütjohann D, Breuer O, Sakinis A, Wennmalm A. Importance of a novel oxidative mechanism for elimination in rat brain as measured with 18O2 techniques in vivo and in vitro. J Biol Chem. 1997; 272: 30178-84, CrossRef.

Lütjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, et al. Cholesterol homeostasis in human brain: Evidence for an agedependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA. 1996; 93: 9799-804, CrossRef.

Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA. 1999; 96: 7238-43, CrossRef.

Papassotiropoulos A, Lütjohann D, Bagli M, Locatelli S, Jessen F, Buschfort R, et al. 24-Shydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res. 2002; 36: 27-32, CrossRef.

Lütjohann D, Papassotiropoulos A, Björkhem I, Locatelli S, Bagli M, Oehring RD, et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res. 2000; 41: 195-8, PMID.

Schönknecht P, Lütjohann D, Pantel J, Bardenheuer H, Hartmann T, von Bergmann K, et al. Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci Lett. 2002; 324: 83-5, CrossRef.

Kölsch H, Ludwig M, Lütjohann D, Rao ML. Neurotoxicity of 24-hydroxycholesterol, an important cholesterol elimination product of the brain, may be prevented by vitamin E and estradiol-17β. J Neural Transm. 2001; 108: 475-88, CrossRef.

Bretillon L, Lütjohann D, Ståhle L, Widhe T, Bindl L, Eggertsen G, et al. Plasma levels of 24Shydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface. J Lipid Res. 2000; 41: 840-5, PMID.

Vega GL, Weiner MF, Lipton AM, von Bergmann K, Lütjohann D, Moore C, et al. Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arc Neurol. 2003; 60: 510-5, CrossRef.

Bu G. Apolipoprotein E and its receptors in alzheimer’s disease: pathways pathogenesis and therapy. Nat Rev Neurosci. 2009; 10: 333-44, CrossRef.

Cirrito JR, May PC, O'Dell MA, Taylor JW, Parsadanian M, Cramer JW, et al. In vivo assessment of brain interstitial fluid with microdialysis reveals plaqueassociated changes in amyloid-β metabolism and halfl ife. J Neurosci. 2003; 23: 8844-53, PMID.

Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM.. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nature Med. 2006; 12: 856-61, CrossRef.

Rebeck GW, Reiter JS, Strickland DK, Hyman BT. Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron. 1993; 11: 575-80, CrossRef.

Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, et al. LRP/amyloid β-peptide interaction mediates differential brain effl ux of Aβ isoforms. Neuron. 2004; 43: 333-44, CrossRef.

Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset alzheimer disease. Proc Natl Acad Sci USA. 1993; 90: 1977-81, CrossRef.

Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988; 240: 622-30, CrossRef.

Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic metaanalyses. Nature Rev Neurosci. 2008; 9: 768-78, CrossRef.

Blacker D, Haines JL, Rodes L, Terwedow H, Go RCP, Harrell LE, et al. ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology. 1997; 48: 139-47, CrossRef.

LaDu MJ, Falduto MT, Manelli AM, Reardon CA, Getz GS, Frail DE. Isoform-specific binding of apolipoprotein E to β-amyloid. J Biol Chem. 1994; 269: 23403-6, PMID.

Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, et al. Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer’s disease. J Clin Invest. 1999; 103: R15-21, CrossRef.

DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, et al. ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron. 2004; 41: 193-202, CrossRef.

Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset alzheimer disease. Proc Natl Acad Sci USA. 1993; 90: 9649-53, CrossRef.

Bogdanovic N, Corder E, Lannfelt L, Winblad B. APoE polymorphism and clinical duration determine regional neuropathology in Swedish APP(670, 671) mutation carriers: implications for late-onset alzheimer’s disease. J Cell Mol Med. 2002; 6: 199-214, CrossRef.

Small GW, Siddarth P, Burggren AC, Kepe V, Ercoli LM, Miller KJ, et al. Influence of cognitive status, age, and APoE-4 genetic risk on brain FDDNP positronemission tomography imaging in persons without dementia. Arch Gen Psychiatry. 2009; 66: 81-7, CrossRef.

Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature. 2006; 443: 796-802, CrossRef.

Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell. 1997; 91: 443-6, CrossRef.

Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem. 2002; 277: 34287-94, CrossRef.

Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G, et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem. 2002; 277: 21836-42, CrossRef.

Yuan J, Yankner BA. Caspase activity sows the seeds of neuronal death. Nature Cell Biol. 1999; 1: E44-5, CrossRef.

Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest. 2005; 115: 2610-7, CrossRef.

Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008; 451: 1069-75, CrossRef.

Lee JA, Gao FB. Regulation of Aβ pathology by beclin 1: a protective role for autophagy? J Clin Invest. 2008; 118: 2015, CrossRef.

Grimm MO, Grimm HS, Pätzold AJ, Zinser EG, Halonen R, Duering M, et al. Regulation of cholesterol and sphingomyelin metabolism by amyloidbeta and presenilin. Nat Cell Biol. 2005; 7: 1118-23, CrossRef.

Mattson MP, Cutler RG, Jo DG. Alzheimer peptides perturb lipid-regulating enzymes. Nat Cell Biol. 2005; 7: 1045-7, CrossRef.

Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004; 256: 183-94, CrossRef.

Blennow K, Zetterberg H. Pinpointing plaques with PIB. Nat Med. 2006; 12: 753-4, CrossRef.

The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working group. Consensus report of the Working group on ‘‘Molecular and biochemical markers of Alzheimer’s disease’’. Neurobiol Aging. 1998; 19: 109-16, CrossRef.

Sjögren M, Andreasen N, Blennow K. Advances in the detection of alzheimer’s disease – use of cerebrospinal fluid biomarkers. Clin Chim Acta. 2003; 332: 1-10, CrossRef.

Tamaoka A, Sawamura N, Odaka A, Suzuki N, Mizusawa H, Shoji S, et al. Amyloid beta protein 1– 42/43 (A beta 1– 42/43) in cerebellar diffuse plaques: enzyme-linked immunosorbent assay and immunocytochemical study. Brain Res 1995; 679: 151-6, CrossRef.

Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical fi lament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA. 1988; 85: 4051-5, CrossRef.

Haass C, Hung AY, Schlossmacher MG, Oltersdorf T, Teplow DB, Selkoe DJ. Normal cellular processing of the betaamyloid precursor protein results in the secretion of the amyloid beta peptide and related molecules. Ann NY Acad Sci. 1993; 695: 109-16, CrossRef.

Motter R, Vigo Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D, et al. Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol. 1995; 38: 643-8, CrossRef.

Tamaoka A, Sawamura N, Fukushima T, Shoji S, Matsubara E, Shoji M, et al. Amyloid beta protein 42(43) in cerebrospinal fl uid of patients with Alzheimer’s disease. J Neurol Sci. 1997; 148: 41-5, CrossRef.

Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM. Plasma and cerebrospinal fluid levels of amyloid beta proteins 1 – 40 and 1 – 42 in Alzheimer disease. Arch Neurol. 2000; 57: 100-5, CrossRef.

Vanderstichele H, Blennow K, D’Heuvaert N, Buyse MA, Wallin A, Andreasen N, et al. Development of a specific diagnostic test for measurement of b-amyloid(1–42) in CSF. In: Fisher A, Hanin I, Yoshida M, editors. Progress in Alzheimer’s and Parkinson’s diseases. New York: Plenum; 1998. p.773-8, CrossRef.

Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, et al. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol. 2001; 58: 373-9, CrossRef.

Kanemaru K, Kameda N, Yamanouchi H. Decreased CSF amyloid beta42 and normal tau levels in dementia with Lewy bodies. Neurology. 2000; 54: 1875-6, CrossRef.

Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, Deyn PPD, et al. Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology. 1999; 52: 1555-62, CrossRef.

Sjogren M, Minthon L, Davidsson P, Granerus AK, Clarberg A, Vanderstichele H, et al. CSF levels of tau, beta-amyloid(1– 42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J Neural Transm. 2000; 107: 563-79, CrossRef.

Otto M, Esselman H, Schultz-Schaeffer W, Neumann M, Schroter A, Ratzka P, et al. et al. Decreased beta-amyloid1-42 in cerebrospinal fluid of patients with Creutzfeldt-Jacob disease. Neurology 2000; 54: 1099-102, CrossRef.

Kapaki E, Kilidireas K, Paraskevas GP, Michalopoulou M, Patsouris E. Highly increased CSF tau protein and decreased beta-amyloid (1–42) in sporadic CJD: a discrimination from Alzheimer’s disease? J Neurol Neurosurg Psychiatry. 2001; 71: 401-3, CrossRef.

Sjogren M, Davidsson P, Wallin A, Granerus A-K, Grundstrom E, Askmark H, et al. Decreased CSF-[beta]-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of [beta]-amyloid induced by disparate mechanisms. Dement Geriatr Cogn Disord. 2002; 13: 112-8, CrossRef.

Ichihara N, Wu J, Chui DH, Yamazaki K, Wakabayashi T, Kikuchi T. Axonal degeneration promotes abnormal accumulation of amyloid beta-protein in ascending gracile tract of gracile axonal dystrophy (GAD) mouse. Brain Res. 1995; 695: 173-8, CrossRef.

Sjogren M, Gisslen M, Vanmechelen E, Blennow K. Low cerebrospinal fluid beta-amyloid 42 in patients with acute bacterial meningitis and normalization after treatment. Neurosci Lett. 2001; 314: 33-6, CrossRef.

Goedert M. Tau protein and the neurofi brillary pathology of Alzheimer’s disease. Trends Neurosci. 1993; 16: 460-5, CrossRef.

Vandermeeren M, Mercken M, Vanmechelen E, Six J, van de Voorde A, Martin JJ, et al. Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzymelinked immunosorbent assay. J Neurochem. 1993; 61: 1828-34, CrossRef.

Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol. 1995; 26: 231-45, CrossRef.

Vigo-Pelfrey C, Seubert P, Barbour R, Blomquist C, Lee M, Lee D, et al. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurology. 1995; 45: 788-93, CrossRef.

Green AJ, Harvey RJ, Thompson EJ, Rossor MN. Increased tau in the cerebrospinal fluid of patients with frontotemporal dementia and Alzheimer’s disease. Neurosci Lett. 1999; 259: 133-5, CrossRef.

Molina L, Touchon J, Herpe M, Lefranc D, Duplan L, Cristol JP, et al. Tau and apo E in CSF: potential aid for discriminating Alzheimer’s disease from other dementias. Neuroreport. 1999; 10: 3491-5, CrossRef.

Morikawa Y, Arai H, Matsushita S, Kato M, Higuchi S, Miura M, et al. Cerebrospinal fluid tau protein levels in demented and nondemented alcoholics. Alcohol Clin Exp Res. 1999; 23: 575-7, CrossRef.

Urakami K, Mori M, Wada K, Kowa H, Takeshima T, Arai H, et al. A comparison of tau protein in cerebrospinal fl uid between corticobasal degeneration and progressive supranuclear palsy. Neurosci Lett. 1999; 259: 127-9, CrossRef.

Hesse C, Rosengren L, Vanmechelen E, Vanderstichele H, Jensen C, Davidsson P, et al. Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke. J Alzheimer’s Dis. 2000; 2: 199-206, PMID.

Otto M, Wiltfang J, Tumani H, Zerr I, Maria Lantsch, Kornhuber J, et al. Elevated levels of tauprotein in cerebrospinal fl uid of patients with Creutzfeldt-Jakob disease. Neurosci Lett. 1997; 225: 210-12, CrossRef.

Tapiola T, Overmyer M, Lehtovirta M, Helisalmi S, Ramberg J, Alafuzoff I, et al. The level of cerebrospinal fluid tau correlates with neurofibrillary tangles in Alzheimer’s disease. Neuroreport 1997; 8: 3961-3, CrossRef.

Sjogren M, Davidsson P, Gottfries J, Vanderstichele H, Edman Åke, Vanmechelen E, et al. The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer’s disease, reflecting a common pathophysiological process. Dement Geriatr Cogn Disord. 2001; 12: 257-64, CrossRef.

Ferreira A, Busciglio J, Caceres A. Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubuleassociated proteins, MAP-1a, HMW-MAP2 and Tau. Brain Res Dev Brain Res. 1989; 49: 215-28, CrossRef.

Iqbal K, Grundke-Iqbal I. Mechanism of Alzheimer neurofi brillary degeneration and the formation of tangles. Mol Psychiatry. 1997; 2: 178-80, CrossRef.

Geddes JW, Tekirian TL, Soultanian NS, Ashford JW, Davis DG, Markesbery WR. Comparison of neuropathologic criteria for the diagnosis of Alzheimer’s disease. Neurobiol Aging. 1997; 18: S99-105, CrossRef.

Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjögren M, et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fl uid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett. 2000; 285: 49-52, CrossRef.

Ishiguro K, Ohno H, Arai H, Yamaguchi H, Urakami K, Park JM, et al. Phosphorylated tau in human cerebrospinal fl uid is a diagnostic marker for Alzheimer’s disease. Neurosci Lett. 1999; 270: 91-4, CrossRef.

Kohnken R, Buerger K, Zinkowski R, Miller C, Kerkman D, DeBernardis J, et al. Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett. 2000; 287: 187-90, CrossRef.

Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal H, Iqbal K, et al. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substraterecycle enzyme-linked immunosorbent assay. Am J Pathol. 2002; 160: 1269-78, CrossRef.

Sjogren M, Davidsson P, Tullberg M, Minthon L, Wallin A, Wikkelso C, et al. Both total and phosphorylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2001; 70: 624-30, CrossRef.

Parnetti L, Lanari A, Amici S, Gallai V, Vanmechelen E,Hulstaert F. CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurol Sci. 2001; 22: 77-8, CrossRef.

Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E, et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 2001; 297: 187-90, CrossRef.

Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, Deyn PPD, et al. Improved discrimination of AD patients using beta-amyloid(1 – 42) and tau levels in CSF. Neurology 1999; 52: 1555-62, CrossRef.

Galasko D, Chang L, Motter R, Clark CM, Kaye J, Knopman D, et al. High cerebrospinal fl uid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch Neurol. 1998; 55: 937-45, CrossRef.

Kanai M, Matsubara E, Isoe K Urakami K, Nakashima K, Arai H, et al. Longitudinal study of cerebrospinal fluid levels of tau, A beta1- 40, and A beta1-42(43) in Alzheimer’s disease: a study in Japan. Ann Neurol. 1998; 44: 17-26, CrossRef.

Andreasen N, Minthon L, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B, et al. Cerebrospinal fluid tau and Abeta42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett. 1999; 273: 5-8, CrossRef.

Kurz A, Riemenschneider M, Buch K, Willoch F, Bartenstein P, Müller U, et al. Tau protein in cerebrospinal fl uid is signifi cantly increased at the earliest clinical stage of Alzheimer disease. Alzheimer Dis Assoc Disord. 1998; 12: 372-7, CrossRef.

Riemenschneider M, Buch K, Schmolke M, Kurz A, Guder WG. Cerebrospinal protein tau is elevated in early Alzheimer’s disease. Neurosci Lett. 1996; 212: 209-11, CrossRef.

Riemenschneider M, Schmolke M, Lautenschlager N, Guder WG, Vanderstichele H, Vanmechelen E, et al. Cerebrospinal beta-amyloid (1-42) in early Alzheimer’s disease: association with apolipoprotein E genotype and cognitive decline. Neurosci Lett. 2000; 284: 85-8, CrossRef.

Arai H, Ishiguro K, Ohno H, Moriyama M, Itoh N, Okamura N, et al. CSF phosphorylated tau protein and mild cognitive impairment: a prospective study. Exp Neurol 2000; 166: 201-3, CrossRef.

Buerger K, Teipel SJ, Zinkowski R, Blennow K, Arai H, Engel R, et al. CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology. 2002; 59: 627-9, CrossRef.

Olsson A, Vanderstichele H, Andreasen N, De Meyer G, Wallin A, Holmberg B, et al. Simultaneous measurement of β-Amyloid (1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem. 2005; 51: 336-45, CrossRef.

LaFerla FM, Oddo S. Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med. 2005; 11: 170-6, CrossRef.

Lee MJ, Blennow K, Andreasen N, Laterza O, Modur V, Olander J, et al. The Brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin Chem 2008; 54: 1617-23, CrossRef.

Zhao C, Braunewell KH. Expression of the neuronal calcium sensor visininlike protein-1 in the rat hippocampus. Neuroscience. 2008; 153: 1202-12, CrossRef.

Braunewell K, Riederer P, Spilker C, Gundelfi nger ED, Bogerts B, Bernstein HG. Abnormal localization of two neuronal calcium sensor proteins, visininlike proteins (vilips)-1 and -3, in neocortical brain areas of Alzheimer disease patients. Dement Geriatr Cogn Disord. 2001; 12: 110-6, CrossRef.

Schnurra I, Bernstein HG, Riederer P, Braunewell KH. The neuronal calcium sensor protein VILIP-1 is associated with amyloid plaques and extracellular tangles in Alzheimer’s disease and promotes cell death and tau phosphorylation in vitro: a link between calcium sensors and Alzheimer’s disease? Neurobiol Dis. 2001; 8: 900-9, CrossRef.

Laterza OF, Modur VR, Crimmins DL, Olander JV, Landt Y, Lee JM, Ladenson JH. Identification of novel brain biomarkers. Clin Chem 2006; 52: 1713-21, CrossRef.

de Jong D, Kremer BP, Olde Rikkert MG, Verbeek MM. Current state and future directions of neurochemical biomarkers for Alzheimer’s disease. Clin Chem Lab Med. 2007; 45: 1421-34, CrossRef.

Verbeek MM, de Jong D, Kremer HPH. Brain-specific proteins in cerebrospinal fluid for the diagnosis of neurodegenerative diseases. Ann Clin Biochem. 2003; 40: 25-40, CrossRef.

Verbeek MM, Olde RIkkert MGM. Cerebrospinal fluid biomarkers in the evaluation pf Alzheimer disease. Clin Chem. 2008; 54: 1589-91, CrossRef.

Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDSADRDA criteria. Lancet Neurol. 2007; 6: 734-46, CrossRef.

Blennow K, Wallin A, Ekman R. Neuron specific enolase in cerebrospinal fluid: a biochemical marker for neuronal degeneration in dementia disorders? J Neural Transm Park Dis Dement Sect. 1994; 8: 183-91, CrossRef.

Parnetti L, Palumbo B, Cardinali L, Loreti F, Chionne F, Cecchetti R, Senin U. Cerebrospinal fluid neuron-specific enolase in Alzheimer’s disease and vascular dementia. Neurosci Lett. 1995; 183: 43-5, CrossRef.

Peskind ER, Griffi n WS, Akama KT, Raskind MA, Van Eldik LJ. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int. 2001; 39: 409-13, CrossRef.

Fukuyama R, Izumoto T, Fushiki S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. Eur Neurol. 2001; 46: 35-8, CrossRef.

Finehout EJ, Franck Z, Relkin N, Lee KH. Proteomic analysis of cerebrospinal fluid changes related to postmortem interval. Clin Chem. 2006; 52: 1906-13, CrossRef.

Lescuyer P, Allard L, Zimmermann-Ivol CG, Burgess JA, Hughes-Frutiger S, Burkhard PR, et al. Identification of post-mortem cerebrospinal fluid proteins as potential biomarkers of ischemia and neurodegeneration. Proteomics. 2004; 4: 2234-41, CrossRef.

Zimmermann-Ivol CG, Burkhard PR, Le Floch-Rohr J, Allard L, Hochstrasser DF, Sanchez JC. Fatty acid binding protein as a serum marker for the early diagnosis of stroke: a pilot study. Mol Cell Proteomics. 2004; 3: 66-72, CrossRef.

Allard L, Burkhard PR, Lescuyer P, Burgess JA, Walter N, Hochstrasser DF, Sanchez JC. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin Chem. 2005; 51: 2043-51, CrossRef.

Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993; 43: 1467-72, CrossRef.

Biere AL, Ostaszewski B, Stimson ER, Hyman BT, Maggio JE, Selkoe DJ. Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. J Biol Chem. 1996; 271: 32916-22, CrossRef.

Horsburgh K, McCulloch J, Nilsen M, Roses AD, Nicoll JA. Increased neuronal damage and apoE immunoreactivity in human apolipoprotein E, E4 isoform-specific, transgenic mice after global cerebral ischaemia. Eur J Neurosci. 2000; 12: 4309-17, CrossRef.

Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004; 5: 575-81, CrossRef.

Ray S, Britschgi M, Herbert C, Uchimura YT, Boxer A, Blennow K, et al. Classification and prediction of clinical alzheimer’s diagnosis based on plasma signaling proteins. Nat Med. 2007; 13: 1359-62, CrossRef.

Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron. 2006; 49: 489-502, CrossRef.

Britschgi M, Wyss-Coray T. Systemic and acquired immune responses in Alzheimer's disease. Int Rev Neurobioli. 2007; 82: 205-33, CrossRef.

LeBlanc AC. The role of apoptotic pathways in Alzheimer's disease neurodegeneration and cell death. Curr Alzheimer Res. 2005; 2: 389-402, CrossRef.

Rollins G. The search for alzheimer’s diagnostics. Are they close or still years away? Clin Lab News. 2009; 35: 1-4.




DOI: https://doi.org/10.18585/inabj.v2i1.107

Copyright (c) 2010 The Prodia Education and Research Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 Indexed by:

                  

                     

          

 

 

The Prodia Education and Research Institute